
The convergence rate of Newton-Raphson consensus optimization
for quadratic cost functions

Filippo Zanella, Damiano Varagnolo, Angelo Cenedese, Gianluigi Pillonetto and Luca Schenato

Abstract— We consider the convergence rates of two convex
optimization strategies in the context of multi agent systems,
namely the Newton-Raphson consensus optimization and a
distributed Gradient-Descent opportunely derived from the
first. To allow analytical derivations, the convergence analyses
are performed under the simplificative assumption of quadratic
local cost functions. In this framework we derive sufficient
conditions which guarantee the convergence of the algorithms.
From these conditions we then obtain closed form expressions
that can be used to tune the parameters for maximizing the rate
of convergence. Despite these formulae have been derived under
quadratic local cost functions assumptions, they can be used as
rules-of-thumb for tuning the parameters of the algorithms in
general situations.

Index Terms— distributed optimization, convex optimization,
consensus algorithms, multi-agent systems, Newton-Raphson
methods, rate of convergence

I. INTRODUCTION

Optimization, intended as the search for the best choice in
a set of plausible alternatives, is probably the most widely
pervasive concept in the whole set of all the computational
sciences. This happens because many practical problems are
usually translatable into well-posed optimization problems,
e.g., as for learning [1] and decision theory [2].

Since the seminal work of Tsitsiklis [3], in the last
decades there has been an ever increasing attention to those
optimization techniques that can be exploited in distributed
multi-agent systems. This trend is the result of an increasing
demand induced by the structural transformations of main
critical infrastructures. A brilliant example is the energy grid,
changing from a centralized paradigm (few plants producing
the energy for everybody) to a distributed one, involving mul-
titudes of small energy conversion units. Another example is
the Internet, where cloud computing and storing is turning
from a vision to a reality.

In this paper we aim to contribute to this trend analyzing
the stability and the rate of convergence of two recently pro-
posed distributed optimization strategies [4], [5] for smooth
convex cost functions. More precisely, we consider study
these algorithms under the assumption of quadratic cost
functions. Although this restriction is substantial, nonetheless
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it allows for analytic characterization and stability conditions
and optimization of the rate of convergence, which are in
general not possible for general convex functions. The intent
is thus to derive general rule-of-thumbs based on these
analytical results that could be useful for the design and
tuning of the algorithm in the context of general convex cost
functions.

Before stating the contributions more precisely, we briefly
review some results that have been already obtained by the
scientific community.

A. Literature review

Optimization and distributed optimization are major re-
search topics in the control and system theory area [6], [7].
Here we specifically consider nonlinear optimization tech-
niques, and send the reader that is interested in distributed
Linear Programming techniques back to [8].

The contributions on nonlinear distributed optimization
can then possibly be divided in three main categories: primal
decompositions based methods, dual decompositions based
methods, and heuristic methods.

The primal decomposition methods class contains all the
algorithms that follow from manipulation of the primal prob-
lem. An important class is the one of the so-called subgradi-
ent methods, see, e.g., [9] and references therein. They are
characterized by a wide applicability, easy implementability
and mild requirements on the objective functions. Unfor-
tunately they may be rather slow: see, e.g., [10, Chap. 6]
for results on real distributed systems. This approach has
been deeply explored including different features such as
randomization and asynchronous implementations [11], [12],
[13], [14].

The dual decomposition methods class contains all the
algorithms obtained from the manipulation of the dual
problem. Usually the dual problem is split into simpler
sub-tasks, and this requires the addition of local variables
that need to be exchanged among agents. The idea is to
constrain these additional variables to agree upon a common
value, thus forcing the algorithm to converge to the global
optimum. An important algorithm in this class of methods
is the so-called Alternating Direction Method of Multipliers
(ADMM), developed in [6, pp. 253-261] and extended in
various distributed contexts like, e.g., [15], [16].

Other approaches may be tailored for particular optimiza-
tion problems and be thus extremely fast at the cost of
restricting the class of possible cost functions, like the so-
called Fast-Lipschitz methods [17], [18]. Finally there exist



also heuristics-based distributed optimization strategies, e.g.,
swarm optimization [19] and genetic algorithms [20].

B. Statement of contributions

Since the performance properties of the strategies pre-
sented above are difficult to be characterized analytically,
in this paper we focus only on a novel primal-based strat-
egy called distributed Newton-Raphson optimization consen-
sus, named because of its reminiscence with the classical
Newton-Raphson optimization method. The choice of an-
alyzing this strategy is motivated by the fact that it is as
easily implementable and as flexible as subgradient-based
techniques (i.e., it requires neither synchronous communica-
tions schemes nor fixed communication graphs, thus it can
be used as it is, e.g., in swarm robotics frameworks), and it
has convergence speeds comparable to the ones of ADMM
schemes [4], [21].

In particular, we analytically characterize the rate of
convergence of two distributed convex optimization tech-
niques in a opportune simplificative framework. In particular,
we consider connected networks where: a) the local cost
functions are generic quadratic costs; b) communications
are synchronous; c) the communication matrix P is an
irreducible symmetric stochastic matrix, i.e., s.t. P1 = 1,
P = PT , Pij ≥ 0 where 1 := [1, . . . , 1] and Pij is the
generic element of P .

The distributed optimization techniques that are charac-
terized in the following are the Newton-Raphson consensus
optimization approach (Algorithm 1, derived from [4]) and a
novel gradient-descent implementation that is obtained from
a simplification of the previous Newton-Raphson approach
(Algorithm 2, derived from [5]).

C. Structure of the paper

Sec. II introduces the notation and the analyzed algo-
rithms, while Sections III and IV we analytically charac-
terize their convergence rates under the posed simplificative
assumptions. We discuss the results in Sec. V, where we also
draw some possible future works.

II. PROBLEM FORMULATION AND NOTATION

We consider an undirected, connected and static network
G = (V, E) composed by N agents, each endowed with a
local scalar quadratic cost function

ψi : R 7→ R ψi(x) =
1

2
ai(x− bi)2

with ai > 0 (this implies ψi to be strictly convex). The global
cost function

ψ : R 7→ R ψ (x) :=
1

N

N∑
i=1

ψi (x)

is thus still a quadratic cost. The goal of the agents is to
collaborate in order to compute the minimizer x∗ of the
global cost function ψ, which is given by:

x∗ := arg min
x
ψ (x) =

∑N
i=1 aibi∑N
i=1 ai

=
1
N

∑N
i=1 aibi

1
N

∑N
i=1 ai

. (1)

The graph G = (V, E) represents the communication net-
work as follows: the agents are represented by the vertexes
V = {1, . . . , N} while the available communication links
correspond to the edges (i, j) ∈ E . The time-invariant com-
munication matrix P ∈ RN×N is assumed to be a symmetric
consensus matrix, i.e., to have non-negative elements, to be
s.t. P1 = 1, P = PT , and compatible with the commu-
nication edges E (i.e., Pij > 0 only if (i, j) ∈ E). Under
these hypotheses, the Perron-Frobenius theorem guarantees
that limk→+∞ P k = 1

N 11
T . We assume that the spectrum

of P , eig (P ) = {λ1 = 1, λ2, . . . , λN}, is known, and that
the eigenvalues are sorted in decreasing order. To compact
the notation, we let Λ := diag [λ1, . . . , λN ]. We also consider
the essential spectral radius defined as

σ := max
λi, i=2,...,N

|λi|

which under the connectivity hypothesis of the commu-
nication graph is s.t. σ < 1. We also assume that no
communication or quantization errors occur (i.e., information
can be exchanged with infinite precision).

In the following sections we will use the following short-
hands:

gi (xi (k)) := ψ′′i (xi (k))xi (k)− ψ′i (xi (k))

g̃i (xi (k)) := xi (k)− ψ′i (xi (k))

hi (xi (k)) := ψ′′i (xi (k))

x (k) := [x1 (k) · · · xN (k)]
T

g (x(k)) := [g1 (x1 (k)) · · · gN (xN (k))]
T

g̃ (x(k)) := [g̃1 (x1 (k)) · · · g̃N (xN (k))]
T

h (x(k)) := [h1 (x1 (k)) · · · hN (xN (k))]
T

a := [a1 · · · aN ]
T

b := [b1 · · · bN ]
T

where ψ′ := dψ
dx and ψ′′ := d2ψ

dx2 . Plain upper case letters
generally indicate matrices (sometimes scalar parameters),
bold lower case letters indicate vectors, and plain lower case
letters indicate scalars. The notation diag [v], where v =
[v1 · · · vN ] is a generic vector, denotes a diagonal matrix
with v1, . . . , vN on its diagonal. I := diag [1]. We use the
usual symbol � to indicate the component-wise Hadamard
product, and the fraction bar to indicate also the Hadamard
division, i.e., the component-wise division of vectors:

g (x(k))

h (x(k))
:=

[
g1 (x1 (k))

h1 (x1 (k))
, . . . ,

gN (xN (k))

hN (xN (k))

]T
.

III. DISTRIBUTED NEWTON-RAPHSON

In this section we analyze the synchronous version of
the Newton-Raphson consensus algorithm proposed in [21],
reported in Alg. 1.

Assuming M = 1 and introducing the variables v(k)
and w(k) to account respectively for g

(
x(k − 1)

)
and



Algorithm 1 Newton-Raphson Consensus [4], [21]
(storage allocation and constraints on parameters)

1: x(k),y(k,m), z(k,m) ∈ RN for m = 0, . . . ,M and
k = 0, 1, . . .

2: P ∈ RN×N , positive and doubly stochastic
3: ε ∈ (0, 1)

(initialization)

4:

set: g
(
x(−1)

)
= h

(
x(−1)

)
= 0

y(0,M) = z(0,M) = 0
x(0) = 0

(main algorithm)
5: for k = 1, 2, . . . do
6: y(k, 0) = y(k−1,M)+g

(
x(k−1)

)
−g
(
x(k−2)

)
7: z(k, 0) = z(k−1,M)+h

(
x(k−1)

)
−h
(
x(k−2)

)
8: for m = 1, . . . ,M do
9: y(k,m) = Py(k,m− 1)

10: z(k,m) = Pz(k,m− 1)

11: x(k) = (1− ε)x(k − 1) + ε
y(k,M)

z(k,M)

h
(
x(k − 1)

)
, Alg. 1 can be rewritten as

v(k) = a� b
w(k) = a

y(k) = P
(
y(k − 1) + a� b− v(k − 1)

)
z(k) = P

(
z(k − 1) + a−w(k − 1)

)
x(k) = (1− ε)x(k − 1) + ε

y(k)

z(k)

with initial conditions v(0) = w(0) = y(0) = z(0) =
x(0) = 0. From 

v(k) = a� b
w(k) = a

y(k) = P k (a� b)
z(k) = P ka

and

p(k) :=
P k+1 (a� b)

P k+1a
; p∗ :=

1
N

∑N
i=1 aibi

1
N

∑N
i=1 ai

1

we obtain the simplified system

x(k + 1) = (1− ε)x(k) + εp(k) , x(0) = 0 .

We notice that proposition 2 in [4] assures the existence of
an ε ∈ R+ s.t. if ε < ε then Algorithm 1 distributedly
and asymptotically computes the global optimum x∗, i.e.,
limk→+∞ x(k) = x∗1.

In order to compute the rate of convergence, we want to
express the systems dynamics in terms of the local error
of each agent with respect to the global minimum, i.e.,
|x∗ − xi(k)|, therefore we consider the error vector ξ(k) :=

x(k)− p∗ whose dynamics can be written as

ξ(k + 1) = (1− ε)ξ(k) + ε
(
p∗ − p(k)

)
,

or equivalently as

ξ(k) =

k∑
`=1

ε(1− ε)k−`
(
p∗ − p(`− 1)

)
.

Consider now that, from consensus theory, it holds that

y(k)
σk

−→ 1
N

∑N
i=1 aibi1 and z(k)

σk

−→ 1
N

∑N
i=1 ai1. Recall

then that p(k) =
y(k)

z(k)
, and that the Hadamard division

operator is continuous and differentiable around the point p∗.
This implies then that there exist a positive constant c ∈ R+

which might depend on the initial condition ξ(0) s.t.

‖p∗ − p(`)‖2 ≤ cσ
`, ∀`

where σ is the essential spectral radius of P . Thus, we have
that

‖ξ(k)‖2 ≤ cε
(1− ε)k

σ

k∑
`=1

(
λ2

1− ε

)`
= cε

(1− ε)k − σk

1− ε− σ
.

Considering then that

‖ξ(k)‖2 ≤
∣∣∣∣ cε

1− ε− σ

∣∣∣∣ (1− ε)k +

∣∣∣∣ cε

1− ε− σ

∣∣∣∣σk
it follows that the convergence rate is dominated by the
biggest between (1 − ε) and σ. The previous thus states
that it is possible, by setting ε = 1, to directly obtain
‖ξ(k)‖2 ≤ cσk, i.e., for the quadratic case the unique factor
limiting the convergence rate of the algorithm is given by
the speed of the consensus algorithm induced by P .

We can summarize the results obtained above in the
following:

Theorem 1 Under the assumption of local quadratic cost
functions, Algorithm 1 is ensured to converge for all ε ∈
(0, 2) for any positive vector a. Moreover the fastest rate
of convergence of the algorithm is given by the essential
spectral radius of P , namely σ, and it is achieved for any
|ε| ≤ 1− σ.

IV. DISTRIBUTED GRADIENT DESCENT

In this section we consider a modified version of Alg. 1,
with the advantage of requiring a smaller number of local
variables and therefore a reduced communication load. As
we will see, this trades off with a more restricted interval
of ε’s guaranteeing the convergence to the global optimum,
and thus eventually with a slower convergence rate. The
algorithm, initially proposed in [5] and here reported in
Alg. 2, is reminiscent of a distributed gradient descent
strategy based on a consensus algorithm.

The analytical derivations of the stability and convergence
rate of Algorithm 2 are more involved that those of the



Algorithm 2 Distributed Gradient Descent [5]
(storage allocation and constraints on parameters)

1: x(k),y(k,m) ∈ RN for m = 0, . . . ,M and k =
0, 1, . . .

2: P ∈ RN×N , positive and doubly stochastic
3: ε ∈ (0, 1)

(initialization)

4:

set: g̃ (x(−1)) = 0
y(0,M) = 0
x(0) = 0

(main algorithm)
5: for k = 1, 2, . . . do
6: y(k, 0) = y(k−1,M)+ g̃

(
x(k−1)

)
− g̃
(
x(k−2)

)
7: for m = 1, . . . ,M do
8: y(k,m) = Py(k,m− 1)

9: x(k) = (1− ε)x(k − 1) + εy(k,M)

previous algorithm and rely on two main steps: 1) the
transformation of the algorithm into a Linear Time Invariant
(LTI) system, characterized by an additional parameter; 2)
the adoption of small-gain theory to derive analytical rules
to compute the optimal ε and the convergence rate based on
σ and the vector a.

A. Transformation of Algorithm 2 into an LTI system

We start by setting M = 1 and defining the new variable
v(k) = g̃

(
x(k − 1)

)
, so that Alg. 2 can be rewritten as

v(k) = diag [1− a]x(k − 1) + diag [a] b (2)
y(k) = P

(
y(k − 1) + v(k)− v(k − 1)

)
(3)

x(k) = (1− ε)x(k − 1) + εy(k) (4)

with initial conditions v(0) = y(0) = x(0) = 0. Substitut-
ing (2) into (3) we obtain

y(k) = Py(k − 1) + Pdiag [1− a]
(
x(k − 1)− x(k − 2)

)
that, substituted into (4), gives

x(k) =
(
(1−ε)I+εPdiag [1−a]

)
x(k − 1)+εPy(k−1)+

−εPdiag [1− a]x(k − 2)
(5)

Rearranging the update rule (4) we obtain1:

y(k − 1) =
1

ε
x(k − 1)− 1− ε

ε
x(k − 2) . (6)

Then by substituting (6) into (5) we eventually rewrite (4)
as

x(k) =
(

(1 + ε)P + (1− ε)I − εPdiag [a]
)
x(k − 1)

+
(
− P + εPdiag [a]

)
x(k − 2)

(7)

1We notice that there is a causal connection between y(k) and x(k)
since (4) can be computed only after the computation of (3). Nonetheless
we can exploit (6) being it a relation between quantities that, at time k, are
all known.

with initial conditions x(−1) = x(0) = 0.
Let us new define the following diagonal matrix ∆ :=

diag [1− a1, 1− a2, . . . , 1− aN ], summarizing the devia-
tions from the ideal condition where alla parabolic cost
functions are identical and with unitary curvature. Clearly

δ := max
i
|1− ai| ⇒ ‖∆‖2 = δ.

Let us now define the new state vector χ(k) :=[
x(k)

x(k − 1)

]
and the following matrices:

A :=

[
(1 + ε)P + (1− ε)I − εP εP − P

I 0

]
(8)

B :=

[
εP
0

]
C :=

[
−I I

]
. (9)

With these we can transform (7) into

χ(k + 1) = (A+B∆C)χ(k), (10)

i.e., into the LTI feedback system χ(k + 1) = Aχ(k) +Bu(k)
ν(k) = Cχ(k)
u(k) = ∆ν(k)

(11)

Therefore x(k) converges to x∗1 if and only if χ(k)
converges to x∗[1T 1T ]T .

Let us consider the unitary matrix U that diagonalizes
the communication matrix P , i.e., UTPU = Λ, and let us

introduce χ :=

[
U 0
0 U

]
χ. With these we can obtain the

equivalent LTI system

χ(k + 1) = (A+B∆C)χ(k) (12)

where

A =

[
Λ + (1− ε)I (ε− 1)Λ

I 0

]
B =

[
εΛ
0

]
(13)

C = C ∆ = UT∆U . (14)

The previous system can be rewritten in block-diagonal form
by adopting an opportune change of variables χ̃ := V χ
where V is a simple permutation matrix. More precisely,
let χ be χ = [χ′1 χ

′
2 . . . χ

′
N χ
′′
1 χ
′′
2 . . . χ

′′
N ]T . Then V can be

chosen s.t. χ̃ = [χ′1 χ
′′
1χ
′
2 χ
′′
2 . . . χ

′
N χ
′′
N ]T . In this way we

obtain
χ̃(k + 1) = (Ã+ B̃ ∆̃ C̃)χ̃(k) (15)

where

Ã =

A1 · · · 0
...

. . .
...

0 · · · AN

 B̃ =

B1 · · · 0
...

. . .
...

0 · · · BN

 (16)

C̃ =

C1 · · · 0
...

. . .
...

0 · · · CN

 ∆̃ = V TUT∆UV (17)



and where Ci := [−1, 1],

Ai :=

[
λi + (1− ε) (ε− 1)λi

1 0

]
Bi :=

[
ελi
0

]
. (18)

From the previous equation it can be seen that the global
dynamics can be decomposed into N parallel subsystem of
dimension 2, which are coupled by the uncertainty matrix ∆̃.
Notice that the dynamics of the global system is thus affine
in the uncertainty matrix ∆̃, the latter thus amenable for the
stability and convergence properties of the whole algorithm.

To analyze these stability properties we now exploit classi-
cal small-gain theory results [22, Chap. 5], that guarantee the
stability of the global system if the following N perturbed
subsystems (with an abuse of notation on x, u and y) x(k + 1) = Aix(k) +Biu(k)

y(k) = Cix(k)
u(k) = ∆iy(k),

(19)

with ∆i s.t. ‖∆i‖2 ≤ ‖∆̃‖2 = ‖∆‖2 = δ, are stable. We re-
mark that this kind of results generally provide conservative
bounds, since they do not take into account the structure of
∆̃, but only the knowledge of its 2-norm.

Small-gain theory can also be used to analyze the rate
of convergence by recasting the computation of the rate of
convergence as a stability problem. In fact, by considering
the transformation x(k) = ρkx(k), it is immediate to check
that the convergence rate of (19) is at least as ρ−k, ρ > 1 if
and only if all the systems x(k + 1) = ρAix(k) + ρBiu(k)

y(k) = Cix(k)
u(k) = ∆iy(k)

(20)

are asymptotically stable.
To this regard, the transfer functions of the input-output

systems (20) are given by

fi(z) =


−ερ

z − ρ(1− ε)
if i = 1

−ελiρ(z − ρ)

(z − ρλi)(z − ρ(1− ε))
if i = 2, . . . , N

(21)
i.e., ρ modulates the position of the natural poles λi and
(1 − ε). Note that the transfer function relative to the
average component, i.e., the transfer function relative to the
subsystem i = 1, has order one due a zero-pole cancelation
relative to the eigenvalue z = ρ. This is to be expected
since it corresponds to the unitary eigenvalue (multiplied
by ρ) of the global dynamics (10) which guarantees that
the consensus χ = 1 is an equilibrium point of the global
system. Such eigenvalue and its relative eigenspace χ = 1

should be excluded from the stability analysis. This is indeed
the case since this eigenvector is independent of ∆, therefore
it does not appear in the transfer functions above.

B. Stability analysis

Based on small-gain theory, see, e.g., [22, Chap. 5], the
various systems (20) are ensured to be asymptotically stable

if the products of the L2 gains of the direct chains and the
feedbacks are strictly smaller than 1, i.e., if

max
ω∈[0,2π)

‖fi (exp (jω))‖2 ‖∆i‖2 < 1, i = 1, . . . , N.

(22)
To check whether (22) holds we exploit the following:

Lemma 2

‖f1‖2 = F(ρ, ε) =



|f1(0)| = ερ

1− ρ(1− ε)
if ρ(1− ε) ≥ 0

|f1(π)| = ερ

1 + ρ(1− ε)
if ρ(1− ε) < 0

(23)

‖fi(exp (jω) ‖2 ≤ G(ρ, ε), i = 2, . . . , N (24)

where G(ρ, ε) is defined as

εσρ(
1− ρσ

) (
ρ+ 1

)(
1 + ρ(1− ε)

) if 1 ≤ ρ ≤ 1√
1− ε

εσρ(
1− ρσ

) (
ρ− 1

)(
1− ρ(1− ε)

) if
1√

1− ε
≤ ρ ≤ 1

1− ε
.

With lemma 2 and condition (22) we then bound the
stability region of the proposed algorithm (in terms of ε)
and upper and lower bound its rate of convergence. We start
with the smallest ε guaranteeing stability, that can be defined
via the following optimization problem:

εc(σ, δ) := supε ε
s.t. F(1, ε)δ < 1

G(1, ε)δ < 1.
(25)

The smallest ε guaranteeing stability is then described by
the following:

Theorem 3 Let

ε1 :=
2

1 + δ
, ε2 :=

2(1− σ)

1− σ + 2δσ
, εc := min{ε1, ε2}.

(26)
If ε ∈ (0, εc) then Alg. 2 converges to the global optimum.

It is also easy to verify that if σ > 1
2 then ε2 < ε1 and thus

also εc = ε2. In general, large networks are s.t. σ ≈ 1, thus in
large networks the typical limiting factor is ε2 (recall that ε1
is associated to the dynamics of the average component). To
complete the caracterization in large networks we also notice

that, in the same situation, if δσ � 1− σ then εc ≈
1− σ
δ

.
I.e., in this case the critical εc is directly proportional to the
spectral gap and inversely proportional to the deviation from
the ideal condition where all the costs are unitarily curved
parabolas.

Convergence rate analysis
Letting η := 1/ρ, we can bound the rate of convergence

by means of the optimization problem

(ε∗, η∗) := arg infε,η η
s.t. F(1/η, ε)δ < 1

G(1/η, ε)δ < 1,
(27)



To solve (27) we divide it in two subproblems that are
then analyzed separately. In particular, defining

η1(ε) := infη η
s.t. F(1/η, ε)δ < 1

(28)

η2(ε) := infη η
s.t. G(1/η, ε)δ < 1

(29)

and η1,2(ε) := max{η1(ε), η2(ε)} it follows that the solution
of (27) can be rewritten as

ε∗ = arg infε η1,2(ε), η∗ = η1,2(ε∗).

The solutions of (28) and (29) are then given by:

Lemma 4 Let

κ1(ε) :=
σ+1−ε(1+σδ)+

√(
σ+1−ε(1+σδ)

)2−4(σ−εσ(1+δ))
2

κ2(ε) :=
σ−1+ε(1+σδ)−

√(
σ−1+ε(1+σδ)

)2
+4
(
σ−εσ(1−δ)

)
2

ε :=
−σ2 + 2σδ + 2− σ

√
σ2 + 4σδ + 4σ2δ2

2
(
σδ + 1

)2
η2(ε) :=

σ +
√
σ2 + 4σδ(1 + σδ)

2(1 + σδ)
.

Then

η1(ε) =

{
1− ε(1− δ) if 0 < ε ≤ 1
−1 + ε(1 + δ) if 1 < ε ≤ ε1

(30)

η2(ε) =

{
κ1(ε) if 0 < ε ≤ ε
κ2(ε) if ε < ε ≤ ε2.

(31)

As a completion of the remark proposed after Thm. 3,
Lemma 4 implies that, in large networks and for δ 6= 0,

ε =
2(1− σ)

1 + 2δ
+ o(1−σ), η2(ε) = 1− 1− σ

1 + 2δ
+ o(1−σ),

i.e., as expected, the convergence rate ρ = 1/η is higher
with big spectral gaps and lower with big deviations from
the ideal parabolic condition on the costs.

V. CONCLUSIONS AND FUTURE WORKS

The rates of convergence of the two convex optimization
algorithms analyzed here have been proven to strongly
depend on their constituting blocks, i.e., the average con-
sensus protocols. The analyses have been performed under
simplificative assumptions, namely quadratic cost functions
and synchronous communications, with the aim of building
the path for characterizations valid in general frameworks.

A prominent side-effect of the proposed studies has been
a set of formulae to be used to tune the parameters of the
algorithms and that constitute important practical tools to
implement the strategies in real-world scenarios.

The results give moreover the following important intu-
ition: convergence properties heavily rely on the amount
of coordination required to the agents. Especially for the
distributed gradient descent, the degree of diversity of the
local cost functions impacts on the rate of convergence: the
intuition is that the optimum can be reached more easily if

agents have similar costs. In a certain sense, similar costs
reflect to similar behaviors, and similar behaviors require
less coordination to reach consensus.

This intuition introduces one of the main research di-
rections to be addressed in the future, since an absence
of synchronization can be intended as milder coordination
requirements. Natural questions are thus how the rate of
convergence of the algorithms change with the consensus
protocols, and how the convergence rates described in this
work change under non-quadratic costs assumptions.
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