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Today's presentation

aim: what types of models can we use to operate a system,
and how can we obtain them?

path:

@ what is control?
© what are control-oriented models?
© how can we get control-oriented models from field measurements?



introducing today's ingredients



Controller types - Feedforward-Feedback
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What is a model?
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What is a control-oriented model?
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How do we represent a control-oriented model?

Definition of state space representation: set of first-order differential equations among
a finite set of inputs, outputs and state variables satisfying the separation principle,
i.e., the future output depends only on the current state and the future input



How do we represent a control-oriented model?

Definition of state space representation: set of first-order differential equations among
a finite set of inputs, outputs and state variables satisfying the separation principle,
i.e., the future output depends only on the current state and the future input

Implication: the state summarizes the effect of past inputs on future output
(sort of a “memory” of the system)



State space representations - Example

Rechargeable flashlight:
@ input u = on / off button
@ state x = level of charge of the battery

@ output y = how much light is emitted



State space representations

z =f(x,u;0)
y =g(z,u;0)

x(k+1) = f(ac(k),u(k); 0)
y(k) =g(x(k),uk); 0)



Definition: linear systems

w G

Definition (linearity)

G(-) is linear iff Vaq, o, w1, ug

Yy =G (qur + aguz) = a1G (ur) + a2G (u2) = 1y1 + ay»
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Definition: nonlinear systems

anything that is not linear
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Linear vs. nonlinear state-space systems

* =Ax+ Bu
y =Cx+ Du

z =f(z,u;0)
Yy :g(m,u;ﬂ)
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how can we do control?
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Control with linear models (LQR)
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Control with linear models (LQR) - fundamental result

under the simplifying assumption that the systems that we consider are fully controllable

Theorem
If

v

then

for an opportune K.

= Az + Bu

=Cx

2 2
J (y,u) = plyls + ul3

argIILIElI@Kn J(y,u) =-Kx
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Control with linear models (LQR) - fundamental result

under the simplifying assumption that the systems that we consider are fully controllable

Theorem
If
*r =Ax+ Bu 9 9
{ y =C£B J(y,u)=p||y||2+||u||2
then

arg&%&n J(y,u) =-Kx

for an opportune K.

How can we find K7 Follow the classical algorithms
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Control with linear models — from LQR to MPC
What if:

. _ 2 2
arg min J (y,u) = pyl + Jul S-t-{

T =Aa:+Bu7
y =Cx )
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Control with nonlinear models (NL-MPC)

argmin J (y,u)
u

- Yy =g(mvu79)
uel

yey
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Main messages up to now

we need a control-oriented

z =f(x,u,0)
Yy :g(wvuae)

and we need to have a good guess for f(-), g(-), and 6
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how do we create a control-oriented model?
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Yet an other way of categorizing models

white box: get structure from physics, get parameters from datasheets
grey box: get structure from physics, get parameters using system identification

black box: get both structure and parameters using system identification
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The simplest non-white model: ARX

y(t) +ary(t—1)+...+an, y(t —ng) =bru(t —1) +... + by, u(t —ny) +e(t)

0=[ai,... an,,b1,...,bn]" e(t) ~ N (0,07)

21



The simplest non-white model: ARX

y(t) +ary(t—1)+...+an, y(t —ng) =bru(t —1) +... + by, u(t —ny) +e(t)

9:[al,...,ana,bl,...,bnb]T 6(t)~N(0,02)
Notation:
0 A(q)=1+a1g ' +... +a,,q ™
°© B(q)=big ' +... +bpqg™
= AlQy(t) = B(q)u(t) +e(t)

21



Why “ARX"?

A(q)y(t) = B(q)u(t) +e(t)

AR: A(q)y(t) (autoregressive)
X: B(q)u(t) (exogenous)

79



ARX models - block schematic representation

A(q)y(t) = B(q)u(t)+e(t)
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Towards more complex models: ARMAX

y(t)+ary(t-1)+.. +an, y(t-nq) = biu(t-1)+.. .+by, u(t—np)+e(t)+cre(t-1)+.. .+cy e(t-n.)

0= [al,...,ana,bl,...,bnb,cl,...,cnc]T e(t) NN(O,UQ)
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Towards more complex models: ARMAX

y(t)+ary(t-1)+.. +an, y(t-nq) = biu(t-1)+.. .+by, u(t—np)+e(t)+cre(t-1)+.. .+cy e(t-n.)

0= [al,...,ana,bl,...,bnb,cl,...,cnc]T e(t) NN(O,JQ)
Notation:
0 A(q)=1+a1qg ' +...+a,,q ™
@ B(q)=big'+...+ bn,qg "
ne

0o C(Q)=1+c1qgt+...+ Cn.q”
= A(Q)y(t) = B(q)u(t) + C(q)e(t)

24



Why “ARMAX"? (name)

A(q)y(t) = B(q)u(t) + C(q)e(t)

AR: A(q)y(t) (autoregressive)
MA: C(q)e(t) (moving-average)
X: B(q)u(t) (exogenous)

25



ARMAX models - block schematic representation

A(@)y(t) = B(q)u(t)+C(q)e(t)

_B(g) C(q)
y(t) = A(q)U(t)+A(q)e(t)

()
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B(q)
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Limitations of ARX and ARMAX models

T

A(q) = denominator for both transfer functions

(kind of limiting)
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Output Error (OE) = simplest digression from ARX and ARMAX
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Box-Jenkins (BJ) = more sophisticated digression from ARX and ARMAX
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Box-Jenkins (BJ) = more sophisticated digression from ARX and ARMAX
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very general, often impractical
(more general models == more difficult estimation process)
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So: how do we actually create a control-oriented model?

Typical strategy:
Q collect data
@ try to identify a linear model (ARX, ARMAX, ...)
© see if it has good predictive capabilities
Q if so, do a linear controller

© if not, try nonlinear identification and nonlinear control

30



how do we identify a system from the data?
(linear or nonlinear, in the next few slides it doesn’t matter)

21



Preliminary step: Least-Squares

i.e., the simplest strategy for estimating parameters from collected data

Assumptions:
data generation model:  y; = f (ug;0) + vy

dataset: D= {(Ut,?/t)}t=1,...,N

hypothesis space: #¢€©

39



Preliminary step: Least-Squares

i.e., the simplest strategy for estimating parameters from collected data

Assumptions:
data generation model:  y; = f (ug;0) + vy

dataset: D= {(Ut,?/t)}t=1,...,N

hypothesis space: #¢€©

Problem: find 0 that “best explains” D

39



Least-squares: geometrical interpretation

|

[ (u1;0)
f (uw:6)

|
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L east-squares: mathematical formulation

Yo = [ (u;0) + vy D = {(ut; Y1) b1

Y1 f(u1;0)

g = arg min N :
0c©
yn | [f (un: )

.....

N

24



L east-squares: mathematical formulation

Yt = f(ut§9) + vt

f = arg min
0e©

Y1

YN

f(u1;0)

f (un:0)

D ={(ut,;¥t) }ye1, N

N 2
= argr&i(;r;; (yt - f (ug;0) )

24



Least-squares example: regression line

Yt = 01 + Oouy + vy D= {(Ut,yt)t} = {(17 1)7 (272)7 (37 1)}

52 arg min ( (1 - 91 - 92)2 + (2 - 91 - 292)2 + (1 - 91 - 392)2)

01,02€R

0 € R?
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Main messages from the last few slides

@ ARX, ARMAX, OE, BJ are simple control-oriented models
@ doing system identification means estimating their parameters

@ “estimation” actually means “optimization”

26



Main messages from the last few slides

@ ARX, ARMAX, OE, BJ are simple control-oriented models
@ doing system identification means estimating their parameters

@ “estimation” actually means “optimization”

how do we identify ARX, ARMAX, OE, BJ, and all the rest?
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parametric estimation as a predictors tuning problem

7



Parameter estimation methods

Assumption:

M = selected model structure, e.g.,

ARX
ARMAX
OE

28



Parameter estimation methods
Assumption:
ARX
ARMAX

M = selected model structure, e.g., OF

main idea: a control-oriented model is as good as it can predict observed data

28



Parameter estimation methods

Assumption:
ARX

ARMAX
OE

M = selected model structure, e.g.,

main idea: a control-oriented model is as good as it can predict observed data
In the linear case:
y(t) = G(g; O)u(t) + H(g; 0)e(t)
U
gltlt =15 0) = [H ' (4:0)G(q:0) Ju(t) + [1 - H(g:60) ] y(1)
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Parameter estimation methods

Assumption:
ARX

ARMAX
OE

M = selected model structure, e.g.,

main idea: a control-oriented model is as good as it can predict observed data
In the linear case:
y(t) = G(g; O)u(t) + H(g; 0)e(t)
U
gltlt =15 0) = [H ' (4:0)G(q:0) Ju(t) + [1 - H(g:60) ] y(1)

= in general, best " = that # that "minimizes” y(t) - 5(t[t-1; 0)

28



Prediction error methods in a nutshell

(and with some simplifications)

prediction errors: (t;0) =y(t) —g(tlt-1; )

20



Prediction error methods in a nutshell

(and with some simplifications)

prediction errors: (t;0) =y(t) —g(tlt-1; )

N
loss function: V(0,D) = % Y l(ep(t;0))
t=1
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Prediction error methods in a nutshell

(and with some simplifications)

prediction errors: (t;0) =y(t) —g(tlt-1; )
1 N
loss function: V(0,D) = N Y l(ep(t;0))
t=1

PEM: @ = argmin V (0, D)

20



PEM vs. machine learning

Special focus of PEM =
@ minimize prediction errors

@ consider dynamics and effects of feedback loops

40



PEM in practice through examples: identifying ARMAX models

A(q;0)y(t) = B(gq; 0)u(t) + C(q;0)e(t)

a1



PEM in practice through examples: identifying ARMAX models

A(q;0)y(t) = B(gq; 0)u(t) + C(q;0)e(t)
U

A(q;0) )

B(q;0)
Clg0)" ™

() = C(g:0)"

(t)

a1



PEM in practice through examples: identifying ARMAX models

A(q;0)y(t) = B(gq; 0)u(t) + C(q;0)e(t)
U

y(t) -
I

(:9) B(g;9)
0= argmlnz (C(q,ﬁ) (t)_C(q;O)u(t))

A(q;0)
C(q;0)

B(q;0)

- cl:0) "

how shall we implement it numerically?

a1



PEM in practice through examples: identifying ARMAX models

through opportune rewritings:

1 1 0
I ls(l;@)] oo ly(l)] oo lu(l)]
Cn : =lan : —|bn :
e(N;0) y(N) u(N)
n 1 T an 1 T b, - 0 T

A9



PEM in practice through examples: identifying ARMAX models

through opportune rewritings:

1 1 0
H le(l;@)] S ly(l)] o [u(l)]
Cn : =|an : —|bn :
e(N;0) y(N) u(N)
Cn o 1|—— an - 1| —— b, - 0]——
= =y =
=C = =B
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PEM in practice through examples: identifying ARMAX models

through opportune rewritings:

1 1 0
oo ls(l;@)] S ly(l)] oo lu(l)
Cn : =|an : —|bn :
e(N;0) y(N) u(N)
e e 1| —— an - 1f—— b, - 0]——
= =y =u
=C = =B



Main message from the last few slides

o identifying different model structures = implementing different optimization
schemes

43



a practical example:
modelling air flow overprovisioning / underprovisioning
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The ideal air flows distribution

to the
chillers

A

from the

!

chillers

O = airflow temperature sensors

(notation: ideal provisioning = €;)
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What do we mean with underprovisioning?

-
— H .'.

(notation: underprovisioning = Q)

46



What do we mean with overprovisioning?

-

(notation: overprovisioning = Q)

A7



Generalizations

ideal provisioning := ventilation system working as planned
underprovisioning := servers receive warmer-than-ideal coolants

overprovisioning := cooling systems receive colder-than-ideal air intakes



Towards data-driven modelling: which evidence is available?
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Towards data-driven modelling: which evidence is

available?

40



Towards data-driven modelling: which evidence is available?
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Towards data-driven modelling: which evidence is available?
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From developing the intuitions to modelling the system

50



From developing the intuitions to modelling the system

Choices:

@ 3 Linear Time Invariant (LTI) models (one for each provisioning region)

@ 2 alternative choices for the models configuration:

e Single Input Single Output (SISO)
o Multi Input Single Output (MISO)

50



Choice of the inputs and outputs

input: ~ CRACs fans speed
output: Ty (topmost servers’ air inlets temperature)

e SISO: {

51



Choice of the inputs and outputs

SISO input:  CRACGs fans speed
° :

output: Ty (topmost servers’ air inlets temperature)
o MISO: inputs: CRACGs fans speed, Tg, T:

" | output: Ty (topmost servers’ air inlets temperature)
with
e Ty = air temperature on the roof
2

o T, = temperature of the CRAC inlet refrigerant

o 1o, = temperature of the CRAC outlet refrigerant
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Results - capabilities of the SISO model to simulate a validation dataset

overprovisioning ideal provisioning
T T T T T T T T 274
g 90 : H H 268 g 60 : : : H :
< [G) -5 (@)
Q S . D S .
o 2w 2
E 26.4 g Hg g
o (0 ; a L 90 27 o
§ 262 § é g
) : O :
60 ! ! \ L 26 45 ! ! \ L 126.8
0 20 40 60 &0 0 20 40 60 80
time [min.] time [min.]

=Ty — T e fans Ty — T e fans

5D



Results - capabilities of the MISO model to simulate a validation dataset
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Quantitative results

Prows!onmg Model Type | Order Fit
region type
SISO | BJ |[3322]]81%
over MISO | ARX | [2222] | 83%
deal SISO BJ | [2255] | 5%
aea MISO | ARX | [3333] | 69%
SISO BJ | [2255] | 85%
under
MISO | ARX | [3333] | 8%




Ok, we got some models. So?

5K



Ok, we got some models. So?

— possibilities for better airflow control

5K



Conclusions
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