Control-oriented modelling - what is it?

Damiano Varagnolo

October 2018

Today's presentation

aim: what types of models can we use to operate a system, and how can we obtain them?

path:

- what is control?
- what are control-oriented models?
- o how can we get control-oriented models from field measurements?

introducing today's ingredients

Controller types - Feedforward-Feedback

What is a model?

What is a control-oriented model?

How do we represent a control-oriented model?

Definition of state space representation: set of first-order differential equations among a finite set of inputs, outputs and state variables satisfying the separation principle, i.e., the future output depends only on the current state and the future input

How do we represent a control-oriented model?

Definition of state space representation: set of first-order differential equations among a finite set of inputs, outputs and state variables satisfying the separation principle, i.e., the future output depends only on the current state and the future input

Implication: the state summarizes the effect of past inputs on future output (sort of a "memory" of the system)

State space representations - Example

Rechargeable flashlight:

- input u = on / off button
- ullet state x= level of charge of the battery
- \bullet output y = how much light is emitted

State space representations

$$\dot{x} = f(x, u; \theta)$$

$$y = g(x, u; \theta)$$

$$x(k+1) = f(x(k), u(k); \theta)$$

$$y(k) = g(x(k), u(k); \theta)$$

ç

Definition: linear systems

Definition (linearity)

 $G(\cdot)$ is linear iff $\forall \alpha_1, \alpha_2, \boldsymbol{u}_1, \boldsymbol{u}_2$

$$y = G(\alpha_1 u_1 + \alpha_2 u_2) = \alpha_1 G(u_1) + \alpha_2 G(u_2) = \alpha_1 y_1 + \alpha_2 y_2$$

Definition: nonlinear systems

anything that is not linear

Linear vs. nonlinear state-space systems

$$\dot{x} = Ax + Bu$$
 $\dot{x} = f(x, u; \theta)$
 $y = Cx + Du$ $y = g(x, u; \theta)$

how can we do control?

Control with linear models (LQR)

$$\begin{cases} \dot{\boldsymbol{x}} = A\boldsymbol{x} + B\boldsymbol{u} \\ \boldsymbol{y} = C\boldsymbol{x} \end{cases} \qquad \text{Idea:} \qquad J(\boldsymbol{y}, \boldsymbol{u}) = \rho \|\boldsymbol{y}\|_2^2 + \|\boldsymbol{u}\|_2^2 \qquad \|\boldsymbol{\chi}\|_2^2 \coloneqq \int_0^{+\infty} \chi^2(t) dt$$

Control with linear models (LQR) - fundamental result

under the simplifying assumption that the systems that we consider are fully controllable

Theorem

lf

$$\begin{cases} \dot{\boldsymbol{x}} = A\boldsymbol{x} + B\boldsymbol{u} \\ y = C\boldsymbol{x} \end{cases} J(y, \boldsymbol{u}) = \rho \|y\|_2^2 + \|\boldsymbol{u}\|_2^2$$

then

$$\arg\min_{u\in\mathbb{R}_u}J\left(y,u\right)=-K\boldsymbol{x}$$

for an opportune K.

Control with linear models (LQR) - fundamental result

under the simplifying assumption that the systems that we consider are fully controllable

Theorem

lf

$$\begin{cases} \dot{\boldsymbol{x}} = A\boldsymbol{x} + B\boldsymbol{u} \\ y = C\boldsymbol{x} \end{cases} J(y, \boldsymbol{u}) = \rho \|y\|_2^2 + \|\boldsymbol{u}\|_2^2$$

then

$$\arg\min_{u\in\mathbb{R}_{u}}J\left(y,u\right)=-K\boldsymbol{x}$$

for an opportune K.

How can we find K? Follow the classical algorithms

Control with linear models - from LQR to MPC

What if:

$$\arg\min_{u \in \mathcal{U}, y \in \mathcal{Y}} J(y, u) = \rho \|y\|_2^2 + \|u\|_2^2 \quad \text{s.t.} \begin{cases} \dot{\boldsymbol{x}} = A\boldsymbol{x} + Bu \\ y = C\boldsymbol{x} \end{cases} ?$$

Control with nonlinear models (NL-MPC)

arg min
$$J(y,u)$$

s.t.
$$\begin{cases} \dot{\boldsymbol{x}} = f(\boldsymbol{x}, u, \theta) \\ y = g(\boldsymbol{x}, u, \theta) \end{cases}$$

$$u \in \mathcal{U}$$

$$y \in \mathcal{Y}$$

Main messages up to now

we need a control-oriented

$$\dot{x} = f(x, u, \theta)$$
 $y = g(x, u, \theta)$

and we need to have a good guess for $f(\cdot)$, $g(\cdot)$, and θ

how do we create a control-oriented model?

Yet an other way of categorizing models

white box: get structure from physics, get parameters from datasheets

grey box: get structure from physics, get parameters using system identification

black box: get both structure and parameters using system identification

The simplest non-white model: ARX

$$y(t) + a_1 y(t-1) + \dots + a_{n_a} y(t-n_a) = b_1 u(t-1) + \dots + b_{n_b} u(t-n_b) + e(t)$$

$$\theta = [a_1, \dots, a_{n_a}, b_1, \dots, b_{n_b}]^T \qquad e(t) \sim \mathcal{N}(0, \sigma^2)$$

The simplest non-white model: ARX

$$y(t) + a_1 y(t-1) + \ldots + a_{n_a} y(t-n_a) = b_1 u(t-1) + \ldots + b_{n_b} u(t-n_b) + e(t)$$

$$\theta = [a_1, \dots, a_{n_a}, b_1, \dots, b_{n_b}]^T \qquad e(t) \sim \mathcal{N}(0, \sigma^2)$$

Notation:

- $A(q) = 1 + a_1 q^{-1} + \ldots + a_{n_a} q^{-n_a}$
- $B(q) = b_1 q^{-1} + \ldots + b_n, q^{-n_b}$

$$\implies A(q)y(t) = B(q)u(t) + e(t)$$

Why "ARX"?

$$A(q)y(t) = B(q)u(t) + e(t)$$

AR: A(q)y(t) (autoregressive)

X: B(q)u(t) (exogenous)

ARX models - block schematic representation

$$A(q)y(t) = B(q)u(t) + e(t)$$
 \Longrightarrow $y(t) = \frac{B(q)}{A(q)}u(t) + \frac{1}{A(q)}e(t)$ \Longrightarrow

Towards more complex models: ARMAX

$$y(t)+a_1y(t-1)+\ldots+a_{n_a}y(t-n_a)=b_1u(t-1)+\ldots+b_{n_b}u(t-n_b)+e(t)+c_1e(t-1)+\ldots+c_{n_c}e(t-n_c)$$

$$\theta = [a_1, \dots, a_{n_0}, b_1, \dots, b_{n_t}, c_1, \dots, c_{n_0}]^T \qquad e(t) \sim \mathcal{N}(0, \sigma^2)$$

Towards more complex models: ARMAX

$$y(t)+a_1y(t-1)+\ldots+a_{n_a}y(t-n_a)=b_1u(t-1)+\ldots+b_{n_b}u(t-n_b)+e(t)+c_1e(t-1)+\ldots+c_{n_c}e(t-n_c)$$

$$\theta = [a_1, \dots, a_{n_a}, b_1, \dots, b_{n_b}, c_1, \dots, c_{n_c}]^T \qquad e(t) \sim \mathcal{N}\left(0, \sigma^2\right)$$

Notation:

- $A(q) = 1 + a_1 q^{-1} + \ldots + a_{n_a} q^{-n_a}$
- $B(q) = b_1 q^{-1} + \ldots + b_n q^{-n_b}$
- $C(q) = 1 + c_1 q^{-1} + \ldots + c_n q^{-n_c}$

$$\implies A(q)y(t) = B(q)u(t) + C(q)e(t)$$

Why "ARMAX"? (name)

$$A(q)y(t) = B(q)u(t) + C(q)e(t)$$

AR: A(q)y(t) (autoregressive)

MA: C(q)e(t) (moving-average)

X: B(q)u(t) (exogenous)

ARMAX models - block schematic representation

$$A(q)y(t) = B(q)u(t) + C(q)e(t) \qquad \Longrightarrow \qquad y(t) = \frac{B(q)}{A(q)}u(t) + \frac{C(q)}{A(q)}e(t) \qquad \Longrightarrow \qquad$$

Limitations of ARX and ARMAX models

A(q) = denominator for both transfer functions(kind of limiting)

Output Error (OE) = simplest digression from ARX and ARMAX

Box-Jenkins (BJ) = more sophisticated digression from ARX and ARMAX

Box-Jenkins (BJ) = more sophisticated digression from ARX and ARMAX

very general, often impractical
(more general models ⇒ more difficult estimation process)

So: how do we actually create a control-oriented model?

Typical strategy:

- collect data
- try to identify a linear model (ARX, ARMAX, ...)
- see if it has good predictive capabilities
- if so, do a linear controller
- if not, try nonlinear identification and nonlinear control

how do we identify a system from the data?

(linear or nonlinear, in the next few slides it doesn't matter)

Preliminary step: Least-Squares

i.e., the simplest strategy for estimating parameters from collected data

Assumptions:

data generation model: $y_t = f(u_t; \theta) + v_t$

dataset: $\mathcal{D} = \{(u_t, y_t)\}_{t=1,...,N}$

hypothesis space: $\theta \in \Theta$

Preliminary step: Least-Squares

i.e., the simplest strategy for estimating parameters from collected data

Assumptions:

data generation model:
$$y_t = f(u_t; \theta) + v_t$$

dataset:
$$\mathcal{D} = \{(u_t, y_t)\}_{t=1,...,N}$$

hypothesis space:
$$\theta \in \Theta$$

Problem: find θ that "best explains" \mathcal{D}

Least-squares: geometrical interpretation

$\begin{bmatrix} y_1 \end{bmatrix}$	$\lceil u_1 \rceil$	$\int f(u_1;\theta)$
$\begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$	$egin{bmatrix} u_1 \ dots \ u_N \end{bmatrix}$:
$\lfloor y_N \rfloor$	$\lfloor u_N floor$	$f(u_N; \theta)$

Least-squares: mathematical formulation

$$y_t = f(u_t; \theta) + v_t$$
 $\mathcal{D} = \{(u_t, y_t)\}_{t=1,...,N}$

$$\widehat{\theta} = \arg\min_{\theta \in \Theta} \left\| \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} - \begin{bmatrix} f(u_1; \theta) \\ \vdots \\ f(u_N; \theta) \end{bmatrix} \right\|^2$$

Least-squares: mathematical formulation

$$y_t = f(u_t; \theta) + v_t$$
 $\mathcal{D} = \{(u_t, y_t)\}_{t=1,...,N}$

$$\widehat{\theta} = \arg\min_{\theta \in \Theta} \left\| \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} - \begin{bmatrix} f(u_1; \theta) \\ \vdots \\ f(u_N; \theta) \end{bmatrix} \right\|^2 = \arg\min_{\theta \in \Theta} \sum_{t=1}^{N} (y_t - f(u_t; \theta))^2$$

Least-squares example: regression line

$$y_t = \theta_1 + \theta_2 u_t + v_t$$
 $\mathcal{D} = \{(u_t, y_t)_t\} = \{(1, 1), (2, 2), (3, 1)\}$ $\theta \in \mathbb{R}^2$

$$\widehat{\theta} = \arg\min_{\theta_1, \theta_2 \in \mathbb{R}} \left(\left(1 - \theta_1 - \theta_2 \right)^2 + \left(2 - \theta_1 - 2\theta_2 \right)^2 + \left(1 - \theta_1 - 3\theta_2 \right)^2 \right)$$

Main messages from the last few slides

- ARX, ARMAX, OE, BJ are simple control-oriented models
- doing system identification means estimating their parameters
- "estimation" actually means "optimization"

Main messages from the last few slides

- ARX, ARMAX, OE, BJ are simple control-oriented models
- doing system identification means estimating their parameters
- "estimation" actually means "optimization"

how do we identify ARX, ARMAX, OE, BJ, and all the rest?

parametric estimation as a predictors tuning problem

Assumption:

```
\mathcal{M} = \text{ selected model structure, e.g., } \left\{ egin{array}{c} \mathsf{ARX} \\ \mathsf{ARMAX} \\ \mathsf{OE} \\ \ldots \end{array} \right.
```

Assumption:

```
\mathcal{M} = \text{ selected model structure, e.g., } \left\{ egin{array}{l} ARX \\ ARMAX \\ OE \\ \ldots \end{array} \right.
```

main idea: a control-oriented model is as good as it can predict observed data

Assumption:

$$\mathcal{M} = \text{ selected model structure, e.g.,}$$
 $\begin{cases} ARX \\ ARMAX \\ OE \\ \dots \end{cases}$

main idea: a control-oriented model is as good as it can predict observed data

In the linear case:

$$y(t) = G(q;\theta)u(t) + H(q;\theta)e(t)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\widehat{y}(t|t-1;\theta) = \left[H^{-1}(q;\theta)G(q;\theta)\right]u(t) + \left[1 - H^{-1}(q;\theta)\right]y(t)$$

Assumption:

$$\mathcal{M} = \text{ selected model structure, e.g., } \left\{ egin{array}{c} \mathsf{ARX} \\ \mathsf{ARMAX} \\ \mathsf{OE} \\ \ldots \end{array} \right.$$

main idea: a control-oriented model is as good as it can predict observed data

In the linear case:

$$y(t) = G(q;\theta)u(t) + H(q;\theta)e(t)$$

$$\downarrow$$

$$\widehat{y}(t|t-1\;;\;\theta) = \left[H^{-1}(q;\theta)G(q;\theta)\right]u(t) + \left[1-H^{-1}(q;\theta)\right]y(t)$$
 in general, best θ^* = that θ that "minimizes" $y(t) - \widehat{y}(t|t-1\;;\;\theta)$

Prediction error methods in a nutshell

(and with some simplifications)

prediction errors:
$$\varepsilon(t;\theta) = y(t) - \widehat{y}(t|t-1;\theta)$$

Prediction error methods in a nutshell

(and with some simplifications)

prediction errors:
$$\varepsilon(t;\theta) = y(t) - \widehat{y}(t|t-1;\theta)$$

loss function:
$$V(\theta, \mathcal{D}) = \frac{1}{N} \sum_{t=1}^{N} \ell(\varepsilon_F(t; \theta))$$

Prediction error methods in a nutshell

(and with some simplifications)

prediction errors:
$$\varepsilon(t;\theta) = y(t) - \widehat{y}(t|t-1;\theta)$$

loss function:
$$V(\theta, \mathcal{D}) = \frac{1}{N} \sum_{t=1}^{N} \ell(\varepsilon_F(t; \theta))$$

$$\mathsf{PEM} \colon \ \widehat{\theta} = \arg\min_{\theta \in \Theta} V(\theta, \mathcal{D})$$

PEM vs. machine learning

Special focus of PEM =

- minimize prediction errors
- consider dynamics and effects of feedback loops

$$A(q;\theta)y(t) = B(q;\theta)u(t) + C(q;\theta)e(t)$$

how shall we implement it numerically?

through opportune rewritings:

$$\begin{bmatrix}
1 \\
\vdots & \ddots & \\
c_n & & \ddots & \\
& \ddots & & \ddots & \\
& & c_n & \cdots & 1
\end{bmatrix}
\underbrace{\begin{bmatrix}
\varepsilon(1;\theta) \\
\vdots \\
\varepsilon(N;\theta)\end{bmatrix}}_{=:\varepsilon} = \underbrace{\begin{bmatrix}
1 \\
\vdots & \ddots & \\
a_n & & \ddots & \\
& \ddots & & \ddots \\
& & a_n & \cdots & 1
\end{bmatrix}}_{=:A}
\underbrace{\begin{bmatrix}
y(1) \\
\vdots \\
y(N)\end{bmatrix}}_{=:y} - \underbrace{\begin{bmatrix}
0 \\
\vdots & \ddots & \\
b_n & & \ddots & \\
& \ddots & & \ddots \\
& & b_n & \cdots & 0
\end{bmatrix}}_{=:u}
\underbrace{\begin{bmatrix}
u(1) \\
\vdots \\
u(N)\end{bmatrix}}_{=:u}$$

through opportune rewritings:

$$\begin{bmatrix}
1 \\
\vdots & \ddots & \\
c_n & & \ddots & \\
& \ddots & & \ddots & \\
& & c_n & \cdots & 1
\end{bmatrix}
\underbrace{\begin{bmatrix}
\varepsilon(1;\theta) \\
\vdots \\
\varepsilon(N;\theta)\end{bmatrix}}_{=:\varepsilon} = \underbrace{\begin{bmatrix}
1 \\
\vdots & \ddots & \\
a_n & & \ddots & \\
& \ddots & & \ddots & \\
& & a_n & \cdots & 1
\end{bmatrix}}_{=:\underline{A}} \underbrace{\begin{bmatrix}
y(1) \\
\vdots \\
y(N)\end{bmatrix}}_{=:y} - \underbrace{\begin{bmatrix}
0 \\
\vdots & \ddots & \\
b_n & & \ddots & \\
& \ddots & & \ddots & \\
& & b_n & \cdots & 0
\end{bmatrix}}_{=:\underline{B}} \underbrace{\begin{bmatrix}
u(1) \\
\vdots \\
u(N)\end{bmatrix}}_{=:\underline{u}}$$

$$\Rightarrow \quad \varepsilon = \underline{C}^{-1}\underline{A}\underline{y} - \underline{C}^{-1}\underline{B}\underline{u}$$

through opportune rewritings:

$$\begin{bmatrix}
1 & & & & \\
\vdots & \ddots & & & \\
c_{n} & & \ddots & & \\
& \ddots & & \ddots & \\
& & c_{n} & \cdots & 1
\end{bmatrix}
\begin{bmatrix}
\varepsilon(1;\theta) \\ \vdots \\ \varepsilon(N;\theta)
\end{bmatrix} = \begin{bmatrix}
1 & & & \\
\vdots & \ddots & & \\
a_{n} & & \ddots & \\
& \ddots & & \ddots & \\
& & a_{n} & \cdots & 1
\end{bmatrix}
\begin{bmatrix}
y(1) \\ \vdots \\ y(N)
\end{bmatrix} - \begin{bmatrix}
0 & & & \\
\vdots & \ddots & & \\
b_{n} & & \ddots & \\
& \ddots & & \ddots & \\
& & b_{n} & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
u(1) \\ \vdots \\ u(N)
\end{bmatrix}$$

$$= :\underline{B}$$

$$\Rightarrow \quad \varepsilon = \underline{C}^{-1}\underline{A}y - \underline{C}^{-1}\underline{B}u$$

$$\Rightarrow \quad \arg \quad \min_{a_{1}, \dots, a_{n_{a}}} V(\underline{C}^{-1}\underline{A}y - \underline{C}^{-1}\underline{B}u)$$

$$b_{1}, \dots, b_{n_{b}}$$

$$c_{1}, \dots, c_{n_{a}}$$

Main message from the last few slides

ullet identifying different model structures \Longrightarrow implementing different optimization schemes

a practical example: modelling air flow overprovisioning / underprovisioning

The ideal air flows distribution

(notation: ideal provisioning $= \Omega_i$)

What do we mean with underprovisioning?

(notation: underprovisioning $=\Omega_u$)

What do we mean with overprovisioning?

(notation: overprovisioning $=\Omega_o$)

Generalizations

ideal provisioning := ventilation system working as planned

underprovisioning := servers receive warmer-than-ideal coolants

overprovisioning := cooling systems receive colder-than-ideal air intakes

From developing the intuitions to modelling the system

From developing the intuitions to modelling the system

Choices:

- 3 Linear Time Invariant (LTI) models (one for each provisioning region)
- 2 alternative choices for the models configuration:
 - Single Input Single Output (SISO)
 - Multi Input Single Output (MISO)

Choice of the inputs and outputs

 $\bullet \ \, \mathsf{SISO:} \left\{ \begin{array}{ll} \mathsf{input:} & \mathsf{CRACs} \ \mathsf{fans} \ \mathsf{speed} \\ \mathsf{output:} & T_2 \ (\mathsf{topmost} \ \mathsf{servers'} \ \mathsf{air} \ \mathsf{inlets} \ \mathsf{temperature}) \end{array} \right.$

Choice of the inputs and outputs

- ullet SISO: $\left\{ egin{array}{ll} \mbox{input:} & \mbox{CRACs fans speed} \\ \mbox{output:} & \mbox{T_2 (topmost servers' air inlets temperature)} \end{array} \right.$
- - ullet T_6 = air temperature on the roof
 - $T_r = \frac{T_{\text{in}} + T_{\text{out}}}{2}$
 - T_{in} = temperature of the CRAC inlet refrigerant
 - ullet T_{out} = temperature of the CRAC outlet refrigerant

Results - capabilities of the SISO model to simulate a validation dataset

Results - capabilities of the MISO model to simulate a validation dataset

Quantitative results

Provisioning	Model	Туре	Order	Fit
region	type	Туре	Order	111
over	SISO	BJ	[3322]	81 %
	MISO	ARX	[2222]	83%
ideal	SISO	BJ	[2255]	75%
	MISO	ARX	[3333]	69%
under	SISO	BJ	[2255]	85 %
	MISO	ARX	[3333]	88 %

Ok, we got some models. So?

Ok, we got some models. So?

⇒ possibilities for better airflow control

5!

Conclusions

Control-oriented modelling - what is it?

Damiano Varagnolo

October 2018