L15 Beräkning av determinanter, egenskaper, Ccamers regel
Determinant av triangulär matris

$$
\begin{aligned}
& A=\left(\begin{array}{ccccc}
a_{1,1} & a_{1,2} & \cdots & a_{n, n} \\
0 & a_{2,2} & & \\
0 & 0 & a_{3,3} & \\
\vdots & \vdots & 0 & a_{n, n} \\
0 & 0 & 0 & 0 & a_{n, n}
\end{array}\right) \\
& \operatorname{det}(A)=a_{1,1} \cdot c_{1,1}+0 C_{2,1}+\cdots+0 C_{n, 1}=a_{1,1} C_{1,1}
\end{aligned}
$$

men $C_{1,1}$ ह̈r ochsai delerminanten av en trianguiar matris sä paisamma sütt fás $\operatorname{det}(A)=a_{1,1} \cdot \operatorname{det}\left(A_{1,1}\right)=a_{1,1} a_{2,2} \cdots a_{n, n}$
Teven 2, (arsnitt 3,1)
Om A är en triangulair matris (三enbart nollor under diagonaten alternatiot enbart nollor över diagonalen) $59^{\circ}$ är $\operatorname{det}(A)=$ produkten av diagonalelementen.

En viktig egenskap ör hur determinanter paiverkas av radoperationer: Man kan visa följunde:
Teorem 3 (avsiitt 3.2)
För en non-matris A gäller att
a) Om $B$ fös genom att addera en multipel av en rad i $A$ till en annan $\operatorname{rad} i A$, $\operatorname{dai}_{\text {är }} \operatorname{det}(B)=\operatorname{det}(A)$
b) Om Bhäs genom att byhpiats $\mathrm{Pa}^{\circ}$ trai rader iA sai air $\operatorname{det}(B)=-\operatorname{det}(A)$
c) Om $B$ fois genom att multiplicern elementen pa $0^{\circ}$ en $\operatorname{radi} A$ med $k$ sai àr $\operatorname{det}(B)=k \cdot \operatorname{det}(A)$.

Bevis Sid 173 iboken.
(2) Exempel 2

$$
\begin{aligned}
& \text { Exempel } 2 \\
& \left|\begin{array}{cccc}
2 & -8 & 6 & 8 \\
3 & -9 & 5 & 10 \\
-3 & 0 & 1 & -2 \\
1 & -4 & 0 & 6
\end{array}\right|=2\left|\begin{array}{cccc}
1 & -4 & 3 & 4 \\
3 & -9 & 5 & 10 \\
-3 & 0 & 1 & -2 \\
1 & -4 & 0 & 6
\end{array}\right|= \\
& =2\left|\begin{array}{cccc}
1 & -4 & 3 & 4 \\
0 & 3 & -4 & -2 \\
0 & -12 & 10 & 10 \\
0 & 0 & -3 & 2
\end{array}\right|=\frac{2}{(3)+4 \cdot(2)}\left|\begin{array}{ccc}
1 & -4 & 3 \\
0 & 3 & -4 \\
0 & 0 & -6 \\
0 & 0 & -3 \\
0
\end{array}\right|(4)+\left(-\frac{1}{2}\right) \cdot(3) \\
& \\
& =2\left|\begin{array}{cccc}
1 & -4 & 3 & 4 \\
0 & 3 & -4 & -2 \\
0 & 0 & -6 & 2 \\
0 & 0 & 0 & 1
\end{array}\right|=2 \cdot 1 \cdot 3 \cdot(-6) \cdot 1=-36
\end{aligned}
$$

Pai det här säitet kan man allid reducera en nxn-matrisAtill tapbstegsform genom att göra radbyten och genom att addera multipel au rad till annan rad $A \sim \ldots \sim U=\left(\begin{array}{ccc}u_{11} \cdots \cdots u_{1, n} \\ 0 & \cdots & u_{n n} \\ \cdots\end{array}\right)=o h^{\circ}$ da är $\operatorname{det}(A)=u_{1,1} u_{2,2} \cdots u_{n, n}, \quad \operatorname{san}^{\circ}$

A inverterbar $\Leftrightarrow$ A har $n$ piviolement (som därmed maiste lisgapa diagonalen)
$\Leftrightarrow\left\{\begin{array}{l}\text { triangglair etter Gauss elliminerins oinmed } \\ \text { alla diagonalelement nollskilda }\end{array}\right.$

$$
\Leftrightarrow 0 \neq u, 1 u_{2,2} \cdots u_{n, n}=\operatorname{det}(A)
$$

$A$ inverterbar $\Leftrightarrow \operatorname{det}(A) \neq 0$

Ex Uppg. 3.2.26 Använd determinanter fir att avgöra on vektorerna är linfart oberoende.

$$
\underbrace{\left(\begin{array}{c}
3 \\
5 \\
-6 \\
4
\end{array}\right)}_{a_{1}} \underbrace{\left(\begin{array}{c}
2 \\
-6 \\
0 \\
7
\end{array}\right)}_{-} \underbrace{\left(\begin{array}{c}
-2 \\
-1 \\
3 \\
0
\end{array}\right)}_{a_{3}} \underbrace{\left(\begin{array}{c}
0 \\
0 \\
0 \\
-3
\end{array}\right)}_{\frac{a}{a}}
$$

$\bar{a}_{2} \bar{a}_{3} \bar{\sigma}_{3} \bar{a}_{3}$ linjaït oberoende $\Leftrightarrow x_{1} \bar{a}_{1}+x_{2} \overline{a_{2}}+x_{3} \bar{a}_{3}+x_{n} \bar{a}_{n}=0$ har baratriviala lösningen

$$
\Leftrightarrow \underbrace{\left(\bar{a}_{1} \bar{a}_{2} \bar{a}_{3} \bar{a}_{n}\right)}_{A} \bar{x}=\overline{0}
$$

$\qquad$
$\qquad$
$\Leftrightarrow A$ inverterbar
$\Leftrightarrow \operatorname{det}(A) \neq 0$

$$
\begin{aligned}
\operatorname{det}(A) & \left.=\left\lvert\, \begin{array}{cccc}
3 & 2 & -2 & 0 \\
5 & -6 & -1 & 0 \\
-6 & 0 & 3 & 0 \\
4 & 7 & 0 & -3
\end{array}\right.\right)=a_{1,4} C_{1,4}+a_{2,4} C_{2,4}+a_{3,4} C_{3,4}+a_{4,4} C_{4,4}=-3 A_{4,4}+\left(\begin{array}{ccc}
3 & 2 & -2 \\
5 & -6 & -1 \\
-6 & 0 & 5
\end{array} \left\lvert\,=3\left(-6 \cdot C_{3,1}+0 \cdot C_{3,2}+3 C_{3,3}\right)=-3\left(\begin{array}{c}
+ \\
+ \\
1
\end{array}\right)+3 A_{3,1}\right.\right)= \\
& \left.\left.=-3\left(\left.-6\left|\begin{array}{c}
2-2 \\
-6-1
\end{array}\right|+3 \right\rvert\, \begin{array}{l}
3 \\
5
\end{array}\right) \right\rvert\,\right)=2(-6 \cdot(-2-12)+3 \cdot(-18-10)) \\
& =-3(+6 \cdot 14-3 \cdot 28)=0
\end{aligned}
$$

Svar Allts ai ej linjärt oberoende vektorer?,
Teovem 5 om $A$ ären $n \times n$-matrís $S a^{a}$ är $\operatorname{det}\left(A^{\top}\right)=\operatorname{det}(A)$
bevis: Uppenbart for $n=1$. Bevisar med indubtion.
Anlang sant for $n=k$, Lit $n=k+1$ 。
Utvecula längs rad 1 for $A$ och laings kolumn 1 for $B=A^{\top}$

$$
\begin{aligned}
& \left.\left.\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{j+1} a_{1, j}\right\} A_{1, j}\right\} \\
& \text { Fais genom att ta bort rad ; oh kainmn } 1 \\
& \text { ur } A^{T} \text { och rälna ut determi nanten. } \\
& \text { Men enligt Q airt antagande är detla samina song } \\
& \operatorname{det}\left(A^{T}\right)=\sum_{j=1}^{n}(-1)^{1+j}\left|a_{j, 1}\right| B_{j, n}\left|=\sum_{j=1}^{N}(-1)^{1+j} a_{1, j}\right| A_{1, j}^{T} \mid=\operatorname{der}\left(A^{a}\right) \\
& \text { frain } A \text { oci ruikan ut } \\
& \text { determinanten } \\
& \text { vsv. }
\end{aligned}
$$

(4) Ex

$$
\left|\begin{array}{cccc}
3 & -1 & 2 & -5 \\
0 & 5 & -3 & -6 \\
-6 & 7 & -7 & 4 \\
-5 & -8 & 0 & 9
\end{array}\right|=(3)+2 \cdot(1)\left|\begin{array}{cccc}
3 & -1 & 2 & -5 \\
0 & 5 & -3 & -6 \\
0 & 5 & -3 & -6 \\
-5 & -8 & 0 & 9
\end{array}\right|=0
$$

Man kan se det pai flera sätt. Tex
En radoperation till ger nollrad, vilket ger färe àn $n$ pivaelement $\operatorname{det}(A)=\operatorname{det}(U)=\operatorname{det}\left(U^{T}\right)=0$ eftersom tuai av kolumnerag är lika, vilket ger lingürt beroende kolumner $s a^{\circ}$ att UT e;är inverterbar och därmed $\operatorname{det}\left(U^{J}\right)=0$.

Teorem 6 (iavinitt 3.2)
Om $A$ och $B$ är nan-matriser saör $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Bevis
Falli: om A inte är inverterbar så följer att $A B$ inte är inverterbar, ty annars kan vi konstruera $\quad D=B(A B)^{-1}$ och fai $\quad A D=A B(A B)^{-1}=I_{n}$ vilhetger invertenbart $A$ enligt Theorem 8 pa förra lektionen. Alltswi är

$$
\operatorname{det}(A) \operatorname{det}(B) \simeq 0=\operatorname{det}(A B)
$$

Eall2: om $A$ ör inverterbar sü är den radelvivalent med $I_{n}$, sai previs som firra lektionen lean vi skoiva

$$
\begin{aligned}
\underbrace{E_{m-1} E_{m}}_{\text {elementura matribes }} A & =I_{n} \\
\qquad & =E_{1}^{-1} E_{2}^{-1} \cdots E_{m}^{-1}
\end{aligned}
$$

Enligt Tearem 3 (sid (1) sai hair en elementair matris determinant
$\operatorname{ocM} \operatorname{det}(E M)=\operatorname{det}(E) \operatorname{det}(M)$ tiralla $n \times n$-matriser $M$.

$$
\begin{aligned}
\operatorname{det}(A B) & =|A B|=\left|E_{1}^{-1} E_{2}^{-1} \cdots E_{m}^{-1} B\right|= \\
& =\left|E_{1}^{-1}\right|\left|E_{2}^{-1} \cdots E_{m}^{-1} B\right|=\cdots=\left|E_{1}^{-1}\right| \cdot\left|E_{2}^{-1}\right| \cdots\left|E_{m}^{-1}\right| \cdot|B|= \\
& =\left|E_{1}^{-1} E_{2}^{-1}\right| \cdot\left|E_{3}^{-1}\right| \cdot\left|E_{n}^{-1}\right| \cdots\left|E_{m}^{-1}\right| \cdot|B|=\left|E_{1}^{-1} E_{2}^{-1} \cdots E_{m}^{-1}\right| \cdot|B|= \\
& =|A| \cdot|B| \quad \quad V \cdot i \cdot v .
\end{aligned}
$$

Fören $n \times n$-matris $A=\left(\begin{array}{l}\overline{a_{1}}\end{array} \cdots \overline{a_{1}}\right)$ ons $\bar{x}=\left(\begin{array}{l}x_{1} \\ b_{1} \\ x_{1}\end{array}\right)$, definiera

$$
A_{k}(\bar{x})=\left(\begin{array}{llllll}
\bar{a}_{1} & \overline{a_{2}} & \cdots & \bar{a}_{k-1} & \bar{x} & \overline{a_{k+1}}
\end{array} \cdots \overline{a_{n}}\right)
$$

Teorem 7 Cramers regel (Arsnitt 3.3)
För varie inverterbar $n \times n$-matris $A$ och varie $\bar{b} i \mathbb{R}^{n}$ sai ges den unika lösningen $\bar{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ till $A \bar{x}=\bar{b}$ av

$$
x_{k}=\frac{\operatorname{det}\left(A_{k}(\bar{b})\right)}{\operatorname{det}(A)}
$$

Bevis
För $A=\left(\begin{array}{llll}\overline{a_{1}} & \overline{a_{2}} & \cdots & \bar{a}_{n}\end{array}\right)$ och $I_{n}=\left(\begin{array}{llll}\overline{e_{1}} & \overline{e_{2}} & \cdots & \overline{e_{n}}\end{array}\right)$
Sai är

$$
\begin{aligned}
& A I_{k}(\bar{x})=A\left(\begin{array}{lllll}
\overline{e_{n}} & \cdots & \overline{e_{k-1}} & \bar{x} & \overline{e_{k+1}} \\
\cdots & \overline{e_{n}}
\end{array}\right) \\
& =\left(\begin{array}{lll}
A \overline{e_{1}} & \cdots & A \overline{e_{k-1}}
\end{array} A \bar{x} A \overline{e_{k+1}} \cdots A \overline{e_{1}}\right) \\
& =\left(\begin{array}{llll}
\overline{a_{1}} & \cdots & \overline{a_{k-1}} & \bar{b} \\
a_{k+1} & \cdots & \overline{a_{n}}
\end{array}\right)=A_{i}(\bar{b}) \\
& \operatorname{det}(A) \operatorname{det}\left(I_{k}(\bar{x})\right)=\operatorname{det}\left(A_{k}(\bar{b})\right) \\
& \begin{array}{l}
\text { matriben ar e jinverterba- ond sad } \\
\text { determinant }
\end{array} \\
& \text { determinant } 0 \text {. On } x_{k} \neq 0 \text {, sa kan }
\end{aligned}
$$

$\begin{aligned} & x \text { med radopsa tione } \\ & \text { ech for determinanten }=\end{aligned}$
$=x_{k} \quad=1 \cdot 1 \cdot 1 \cdots-1 \cdot x_{k} 1 \cdots \cdots 1 x_{k}$
(6) Ex Uppgift 3.3 .4

$$
\begin{aligned}
& \left\{\begin{array}{cc}
-5 x_{1}+3 x_{2}=9 \\
3 x_{1}-x_{2}=-5
\end{array} \Leftrightarrow A \bar{x}=\bar{b} \text { med } A=\left(\begin{array}{cc}
-5 & 3 \\
3 & -1
\end{array}\right) \text { och } \bar{b}=\binom{9}{-5}\right. \\
& A_{1}(\bar{b})=\left(\begin{array}{cc}
9 & 3 \\
-5 & -1
\end{array}\right) \\
& \quad \operatorname{det}\left(A_{1}(\bar{b})\right)=\left|\begin{array}{cc}
9 & 3 \\
-5 & -1
\end{array}\right|=-9+15=6
\end{aligned} \begin{array}{ll}
A_{2}(\bar{b})=\left(\begin{array}{cc}
-5 & 9 \\
3 & -5
\end{array}\right) & \operatorname{det}\left(A_{2}(\bar{b})\right)=\left|\begin{array}{cc}
-5 & 9 \\
3 & -5
\end{array}\right|=25-27=-2 \\
& \operatorname{det}(A)=\left|\begin{array}{cc}
-5 & 3 \\
3 & -1
\end{array}\right|=5-9=-4
\end{array}
$$

$$
\begin{aligned}
& x_{1}=\frac{\operatorname{det}\left(A_{1}(\bar{b})\right)}{\operatorname{det}(A)}=\frac{6}{-4}=-\frac{3}{2} \\
& x_{2}=\frac{\operatorname{det}\left(A_{2}(\bar{b})\right)}{\operatorname{det}(A)}=\frac{-2}{-4}=\frac{1}{2}
\end{aligned}
$$

Kontroll:

$$
\left\{\begin{array}{l}
-5 \cdot\left(-\frac{3}{2}\right)+3 \cdot\left(\frac{1}{2}\right)=\frac{18}{2}=9 \\
3 \cdot\left(-\frac{3}{2}\right)-\frac{1}{2}=-\frac{10}{2}=-5
\end{array}\right.
$$

Stümmer!

Ex2 sid 178

$$
\left\{\begin{aligned}
35 x_{1}-2 x_{2} & =4 \\
-6 x_{1}+5 x_{2} & =1
\end{aligned}\right.
$$

Lüsbar för vilket/vilka s? hitta lisning med (ramess regel
skriv pai formen $A \bar{x}=b$ med $A=\left(\begin{array}{cc}35 & -2 \\ -6 & 5\end{array}\right), \bar{b}=\binom{4}{1}$
$A_{1}(\bar{b})=\left(\begin{array}{cc}4 & -2 \\ 1 & 5\end{array}\right)$
$A_{2}(5)=\left(\begin{array}{cc}35 & 4 \\ -6 & 1\end{array}\right)$

$$
\operatorname{det}(A)=3 s^{2}-12=3\left(s^{2}-4\right)=3(s-2)(s+2)
$$

Unik lösning $\Leftrightarrow A$ inverterbar $\Leftrightarrow \operatorname{det}(A) \neq 0 \Leftrightarrow s \neq \pm 2$ För $s \neq \pm 2$

$$
\begin{aligned}
& x_{1}=\frac{\operatorname{det} A_{1}(\bar{b})}{\operatorname{det}(A)}=\frac{4 s+2}{3(s-2)(s+2)} \\
& x_{2}=\frac{\operatorname{det} A_{2}(\bar{b})}{\operatorname{det}(A)}=\frac{3 s+24}{3(s-2)(s+2)}=\frac{s+8}{(s-2)(s+2)}
\end{aligned}
$$

Cramers regel ger en explicit formel för elementen i $A^{-1}$ för en inverterbar matris $A$. Laot

$$
A^{-1}=\left(\begin{array}{lll}
\bar{x}_{1} & \cdots & \bar{x}_{n}
\end{array}\right) .
$$

Då är

$$
\left(\overline{e_{1}} \cdots \bar{e}_{n}\right)=I_{n}=A A^{-1}=A\left(\bar{x}_{1} \cdots \bar{x}_{n}\right)=\left(A \bar{x}_{1} \cdots A \bar{x}_{n}\right)
$$

Alltsai är kolumn $k$ i $A^{-1}$ lüsningen till $A \overline{x_{k}}=\overline{e_{k}}$
Elementet pai rad $r$ och kolumank $i A^{-1}$ fais alltsa $a^{\circ}$ fruin Cramers regel:

$$
\begin{equation*}
\left(A^{-1}\right)_{r, k}=\frac{\operatorname{det}\left(A_{r}\left(\bar{e}_{k}\right)\right)}{\operatorname{det}(A)} \tag{*}
\end{equation*}
$$

observera även att

$$
\operatorname{det}\left(A_{p}\left(\overline{e_{k}}\right)\right)=\operatorname{det}\left(\left(\overline{a_{1}} \cdots \overline{a_{r-1}} \bar{e}_{k} \bar{a}_{a_{+1}} \cdots \bar{a}_{n}\right)\right) \text {, }
$$

dür utveckling längs kolumn $r$ ger exakt en nollskilld term:

$$
\begin{aligned}
& \operatorname{det}\left(\operatorname{Ar}\left(\overline{e_{k}}\right)\right)=(-1)^{k+r} \operatorname{det}\left(A_{k, r}\right)=C_{k, r}, \\
& \operatorname{dus}\left(A^{-1}\right)_{r, k}=\frac{(-1)^{k+r} \operatorname{det}\left(A_{k, r}\right)}{\operatorname{det}(A)}=\frac{C_{k, r}}{\operatorname{det}(A)}
\end{aligned}
$$

Dettager
Teorem 8
För en $n \times n$-matris $A$ är

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

för den adjungerade matrisen (adjoint matrix)

$$
\operatorname{Adj} A=\left[\begin{array}{cccc}
c_{1,1} & c_{2,1} & \cdots & c_{n, 1} \\
c_{1,2} & c_{2,2} & \ddots & c_{n, 2} \\
c_{1, n} & c_{2, n} & \cdots & c_{n, n}
\end{array}\right]
$$

(8) Ex: Uppgift 3.3 .15

Tecken for $C_{r, n}$ :

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
3 & 0 & 0 \\
-1 & 1 & 0 \\
-2 & 3 & 2
\end{array}\right), \quad \operatorname{det}(A)=3 \cdot 7 \cdot 2=6 \quad\left(\begin{array}{c} 
\pm \\
\pm+ \\
+ \\
+
\end{array}\right) \\
& \begin{array}{lll}
A_{1,1}=\left(\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right)=2, & A_{1,2}=\left|\begin{array}{ll}
-1 & 0 \\
-2 & 2
\end{array}\right|=2, & A_{1,3}=\left|\begin{array}{ll}
-1 & 1 \\
-2 & 3
\end{array}\right|=-3+2=-1 \\
C_{1,1}=2 & C_{1,3}=-1 &
\end{array} \\
& C_{1,3}=-1 \\
& \begin{array}{ll}
A_{2,1}=\left|\begin{array}{ll}
0 & 0 \\
32
\end{array}\right|=0, \quad A_{2,2}=\left|\begin{array}{cc}
3 & 0 \\
-2 & 2
\end{array}\right|=6, \quad, \quad A_{2,3}=\left|\begin{array}{cc}
3 & 0 \\
c_{2,1}=-0 & c_{2,3}=-9
\end{array}\right|=9 \\
c_{2,2}=6
\end{array}|=| \begin{array}{ll}
1 &
\end{array} \\
& c_{2,2}=6 \\
& C_{2,3}=-9 \\
& A_{3,1}=\left|\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right|=0, A_{3,2}=\left|\begin{array}{cc}
3 & 0 \\
-1 & 0
\end{array}\right|=0, \quad A_{3,3}=\left|\begin{array}{cc}
3 & 0 \\
-1 & 1
\end{array}\right|=3 \\
& c_{3,1}=0 \quad c_{3,2}=-0 \text {. } \\
& c_{3,3}=3
\end{aligned}
$$

$\operatorname{Adj} A=\left(\begin{array}{ccc}2 & 0 & 0 \\ 2 & 6 & 0 \\ -1 & -9 & 3\end{array}\right) \quad$ SVAR $: A^{-1}=\frac{1}{6}\left(\begin{array}{ccc}2 & 0 & 0 \\ 2 & 6 & 0 \\ -1 & -9 & 3\end{array}\right)$
|Determinanten| = area av parallellogram alternativt volym av parallellepiped


Antag att $\bar{a}$ och $\bar{b}$ är linjärt oberoende



Frain detta följer (med liknande resonemang for $3 \times 3$ ):
Teorem 9
Om A är en $2 \times 2$-matris $59^{\circ}$ är $|\operatorname{det}(A)|=\operatorname{arean}$ för parallellogrammet som ges ar kolumnernai $A$.

SOm A ären $3 \times 3$-matris $s a^{\circ}$ ar $(\operatorname{det}(A))=$ $\{$ = volymen för parallellepipeden som ges au kolumnerna, A.
om $P$ är parallellogrammet som ges av $\bar{a}_{1}$ och $\overline{a_{2}}$ och om $T$ är en linjür avbildning frinn $\mathbb{R}$ tillR da kan Pskrivan som mängden

$$
P=\left\{s_{1} \bar{a}_{1}+s_{2} \bar{a}_{2}: 0 \leqslant s_{1} \leqslant 1,0 \leqslant s_{2} \leqslant 1\right\}
$$

$T$ avbildar dessa vektorer $8 a^{\circ}$

$$
T\left(s_{1} \overline{a_{1}}+s_{2} \overline{a_{2}}\right)=s_{1} T\left(\overline{a_{1}}\right)+s_{2} T\left(\overline{a_{2}}\right) .
$$

On T har standardmatris $M$ sai är allisa

$$
T\left(s_{1} \overline{a_{1}}+s_{2} \overline{a_{2}}\right)=s_{1} M \overline{a_{1}}+s_{2} M \overline{a_{2}}, \quad 0 \leqslant s_{n} \leqslant 1
$$

Detta à ocksai ett parallellogram, med trai sidor girna av $M \overline{a_{1}}$ och $M \overline{a_{2}}$, och med arean

$$
\left.\left.\begin{array}{rl}
\operatorname{det} & \left(\left[M_{\overline{a_{1}}} M \overline{a_{2}}\right]\right)=\operatorname{det}(M \cdot \underbrace{\left[\overline{a_{1}}\right.}_{A} \overline{a_{2}}]
\end{array}\right)=\operatorname{det}(M) \operatorname{det}(A)\right] \text { det }(M) \cdot \text { Arean for } P . ~ l
$$

Füljer ur arsuitt 10.3 i Adams: För $A=\left(\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right)=\left(\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{3} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right)$ säär
$\left.\operatorname{det}(A)=c_{1} \left\lvert\, \begin{array}{lll}a_{2} & b_{2}\end{array}\right.\right)-c_{2}\left|a_{1} b_{1}\right|+c_{3} \mid a_{1}$

$$
\operatorname{det}(A)=c_{1}\left|\begin{array}{ll}
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right|-c_{2}\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{3} & b_{3}
\end{array}\right|+c_{3}\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|
$$

och parallellepipeden med sidor givna av $\bar{a}, \bar{b}, \bar{c}$ har volym
(10) Frinn detta och liknande resonemang for $\mathbb{R}^{3}$ fais
Teorem 10

$$
3 \times 3
$$

För en linjär aubildning $T$ medinapepied $2 \times 2$ standardmatris $M$ gäller att varie paralleilogioged Pamparbildas pao êt parallelleapod am med area area av $T(P)=|\operatorname{det}(M)| \cdot \operatorname{arean} \operatorname{cr} P$

## Rule of Sarrus

From Wikipedia, the free encyclopedia
Sarrus' rule or Sarrus' scheme is a method and a memorization scheme to compute the determinant of a $3 \times 3$ matrix. It is named after the French mathematician Pierre Frédéric Sarrus.

Consider a $3 \times 3$ matrix

$$
M=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

then its determinant can be computed by the following scheme:
Write out the first 2 columns of the matrix to the right of the 3rd column, so


Sarrus' rule: The determinant of the three columns on the left is the sum of the products along the solid diagonals minus the sum of the products along the dashed diagonals that you have 5 columns in a row. Then add the products of the diagonals going from top to bottom (solid) and subtract the products of the diagonals going from bottom to top (dashed). This yields:

$$
\operatorname{det}(M)=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{31} a_{22} a_{13}-a_{32} a_{23} a_{11}-a_{33} a_{21} a_{12}
$$

A similar scheme based on diagonals works for $2 \times 2$ matrices:

$$
\operatorname{det}(M)=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}
$$

Both are special cases of the Leibniz formula, which however does not yield similar memorization schemes for larger matrices. Sarrus' rule can also be derived by looking at the Laplace expansion of a $3 \times 3$ matrix.

## References



Alternative vertical arrangement

- Khattar, Dinesh (2010). The Pearson Guide to Complete Mathematics for

AIEEE (http://books.google.de/books?id=7cwSfkQYJ_EC\&pg=SA6-PA2) (3rd ed.). Pearson Education India. p. 6-2. ISBN 978-81-317-2126-1.

- Fischer, Gerd (1985). Analytische Geometrie (in German) (4th ed.). Wiesbaden: Vieweg. p. 145. ISBN 3-528-37235-4.


## External links

- Sarrus' rule at Planetmath (http://planetmath.org/encyclopedia/RuleOfSarrus.html)
- Linear Algebra: Rule of Sarrus of Determinants
(http://www.youtube.com/watch?v=4xFIi0JF2AM) at khanacademy.org

Retrieved from "http://en.wikipedia.org/w/index.php?title=Rule_of_Sarrus\&oldid=633970400"
Categories: Linear algebra

- This page was last modified on 15 November 2014 at 18:52.
- Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia ${ }^{\circledR}$ is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.


## regularize

Trying to keep track of what I stumble upon

## June 24, 2011

## Sarrus Rules for $4 \times 4$ (second try)

## Posted by Dirk under Math I Tags: Determinant, sarrus |

## [8] Comments

My colleague K.-J. Wirths came up with another Rule of Sarrus for $4 \times 4$ matrices. His suggestion is somehow closeto the original (at least graphically) and is easier to memorize. One has to use the "original" Rule of Sarrus for the $4 \times 4$ case but now three times. For the first case use the original matrix and for the next two case one has to permute two columns. Graphically this gives the following the pictures:



In principle this generalizes to larger $n \times n$ matrices. But beware: $n!$ is large! For the $5 \times 5$ case one has a sum of 120 products but each "standard Sarrus" only gives 10 of them. Hence, one has to figure out 12 different permutations. In the $n \times n$ case one even needs to memorize $\frac{n!}{2 n}$ permutation, let alone all the computations...

I am sure that somebody with stronger background in algebra and more knowledge about permutation groups could easily figure out what is going on here, and to visualize the determinants better.

Update: Indeed! Somebody with more background in algebra already explored how to generalize the Sarrus rule to larger matrices. Again it was my colleague K.-J. Wirths who found the reference and here it is:

- Обобщенное правило Саррюса, by С. Аршон, Матем. сб., 42:1 (1935), 121-128
and it is from 1935 already! If you don't speak Russian, in German it is
- "Verallgemeinerte Sarrussche Regel", S. Arschon, Mat. Sb., 42:1 (1935), 121-128
and if you don't speak German either, you can visit the page in mathnet.ru or to the page in the Zentralblatt (but it seems that there is no English version of the paper or the abstract available...) Anyway, you need ( $n-1$ )!/2 permutations of the columns and apply the plain rule of Sarrus to all these (and end up, of course, with $2 n(n-1)!/ 2=n$ ! summands, each of which has $n$ factors - way more than using $\operatorname{LU}$ of QR factorization.)


## 8 Responses to "Sarrus Rules for $4 \times 4$ (second try)"

1. Sarrus Rules for $4 \times 4$ «regularize Says:

## September 7, 2011 at 2:00 pm

[...] a follow-up post, I have show a simpler visualization. Share this:TwitterFacebookLike this:LikeBe the first to like [...]

## Reply

2. Sarrus rule, and extensions to higher orders « Alasdair's musings Says:

August 16, 2012 at 6:16 am
[...] rules don't originate with me, of course; you can see the same rule here. I'm sure I'm the seven millionth person to have done [...]

## Reply

3. Robin Whitty Says:

November 18, 2013 at 6:34 pm
Very interesting! I've done a diagrammatic version of the $4 \times 4$ rule, based on an octagon:
http://www.theoremoftheday.org/GeometryAndTrigonometry/Sarrus/Sarrus4x4.pdf

## Reply

4. chimpintrin Says:

August 13, 2014 at $4: 39 \mathrm{pm}$
The simplest method was found in October in the year 200, by the Mexican mathematical Gustavo Villalobos Hernandez of the University of Guadalajara. It is in Spanish in the following wikipedia page:

## http://es.wikipedia.org/wiki/Regla de Villalobos

Reply

1. Dirk Says:

August 13, 2014 at $5: 18 \mathrm{pm}$
Yeah, you can also permute the rows... Seems a bit simpler to memorize since one uses the same sign pattern that way.

Reply

1. chimpintrin Says:
$\frac{\text { August 13, } 2014 \text { at 7:20 pm }}{\text { Thanks for your comment }}$
Thanks for your comment. Actually I do not speak English. I speak Spanish and Russian. I think it would be appropriate wikipedia page
https://es.wikipedia.org/wiki/Regla de_Villalobos
I could be in English. I could use a virtual translator, but are not very accurate.
Greetings
2. chimpintrin Says:

August 13, 2014 at 7:26 pm
Thanks for your comment. Actually I do not speak English. I speak Spanish and Russian. I think it would be appropriate wikipedia page
https://es.wikipedia.org/wiki/Regla_de_Villalobos
I could be in English. I could use a virtual translator, but are not very accurate.

## Greetings.

3. mehta satish Says:

August 17, 2014 at 9:39 am
thanks/ i have also tried similar - but this yours is better/easier please send some actual numerical solved showing actions /few things not clear

Create a free website or blog at WordPress.com. - The Connections Theme.

