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Introduction

A 'full-wave' solution of a frequency domain formulated PEEC problem require
the calculation of (m2

� m) complex capacitive and (n2
� n) complex inductive

elements, for m and n unknown capacitive and inductive cells respectively. The
calculation done in the C++ code, using a surface or contour method, involves the
usage of Gaussian integration of a speci�c order. This results in large computation
time for large problems, see Example section. A common used approach to de-
crease computation time is to exclude the calculation of partial element couplings
that are far apart, ie weakly coupled cells. This decrease the element calculation
time and result in more sparse matrices than for a complete model. The solution
time can then also be decreased if some 'sparse matrix solver' can be used. In our
code, a LU decomposition routine is used to solve the PEEC model and a sparse
system matrix is thus not 'needed'. Instead, the code has been altered so di�erent
methods with di�erent accuracy, read order of Gaussian integration, can be used
according to predie�ned 'rules'. This has been accomplished through the use of
two coupling matrices, inductive and capacitive, and manually set coupling limits
and order of Gaussian integration used in the methods.
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Scheme

To be able to use di�erent routines for the calculation of the partial elements the
C++ code has been changed in the following ways.

1. The program starts with the calculation of static coupling matrices, c c and
i c, using closed form solutions that are exact and fast. In this test version
all the elements are orthogonal with zero thickness. The self elements are
also stamped into the 'real' matrices, pijkc and lpijkc.

2. Then the frequency loop starts.

3. Before the complex partial elements are calculated, for a speci�c frequency,
the values in the c c and i c matrices are used to calculate the coupling
coeÆcients, c cap and c ind, according to eq. 24 and eq. 25 in 1. Depending
on the magnitude of the coupling coeÆcient a prede�ned routine can be
used for the complex calculation, surface- or contour - routines. In this

way it is possible to control the accuracy in the partial elements and thus the

speed of the calculation. The program calculates the elements and places the
'correct' values in the pijkc and lpijkc matrices. The frequency is stepped
and the calculations described in this point is repeated.

4. The complex capacitive and inductive surface and contour routines, pmnoc,
lpmnoc, Pp cont c and Lp cont c, has also been changed so that the order
of Gaussian integration inside the routine is included in the 'calling' of that
speci�c function.

This approach could also be re�ned by the inclusion of (1) A distance matrix
describing the distances between the cells and also (2) A cell dimension matrix.
This has not been tested yet.

1A. E. Ruehli, H. Heeb, "Circuit Models for Three-Dimensional Geometrices Including di-

electrics", IEEE Trans. on Microwave theory & techniques, vol. 40, no.7, july 1992.
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Speedup

Some simple tests have been performed using the method described in th eprevious
section. The focus, so far, is mainly on the speedup in the calculations and
not on the accuracy in the solution. In Figure 1 the calculation time, for seven
frequencies, depending on di�erent orders, 8th, 5th 3rd, of Gaussian integration
for the two basic methods are displayed for up to 60 capacitive nodes. It is
clearly shown that the surface method is computationally burdensome. In Figure
2 the same 'problems' are solved using two di�erent combinations of computing
routines. The �rst combination, comb1, performes the computation according to

coupling > 0:35 use 8th order surface routine

0:35 > coupling > 0:15 use 5th order surface routine

0:15 > coupling > 0:10 use 3rd order surface routine

0:10 > coupling use 5th order contour routine

The second combination, comb2, performes calculation according to

coupling > 0:35 use 6th order surface routine

0:35 > coupling > 0:15 use 5th order surface routine

0:15 > coupling > 0:10 use 6th order contour routine

0:10 > coupling use 5th order contour routine

The results shows that the method gives a considerably speed-up if (1) di�erent
order of Gaussian integration can be used and (2) if the surface and contour
formulation can be used together.
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Figure 1: Calculation speed for surface and contour formulation
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Figure 2: Calculation speed uning surface form. or the 'conditioned solver'
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Figure 3: Speedup for di�erent order of Gaussian integration
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Speedup vs accuracy 1/2

In this section the accuracy, in term of the dipole input impedance, versus speedup
is adressed for a simple 20 cm half wavelength dipole. The dipole is discretized
into 20 cells per 10 cm 'arm'. This o�ers 20 cells per wavelength at 3GHz, wich is
the upper frequency limit for this test. For the reference case, Ref in the �gures,
the mutual partial elements are calculated using 5th order Gaussian integration
in the surface routine, indicated with the notation 5 ths in the table below. The
test cases, test1-test4 is performed using (1) di�erent combinations of the surface
and contour routine and (2) di�erent accuracy in the Gaussion integration in the
routines, as displayed in the tables below. For example the notation 7th c indicates
that the contour routine has been used with 7th order of Gaussian integration.
For the tests, the computation time is also displayed.
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Figure 4: Input impedance for dipole for test1 and 2

Threshold Ref Test1 Test2

coupling > 0:25 5th s 3rd s 5th s
0:25 > coupling > 0:15 5th s 3rd s 4th s
0:15 > coupling > 0:05 5th s 3rd s 3rd s
0:05 > coupling > 0:01 5th s 3rd s 3rd s
0:01 > coupling 5th s 3rd s 2nd s

Time = 15625 s. Time = 3750 s. Time = 3125 s.
To be noted from �gure 4

To use 3rd order of Gaussian integration in the surface routine o�er no good
accuracy, compared to 5th order Gi(reference case).

For test2, the agreement compared to the reference case is 'good' almost up
to the upper frequency limit, ie 3GHz, and the speedup is a factor 5.

Test1 and test2 shows the importance of keeping the accuracy in the strong
coupled cells, ie a high order of Gaussian integration. For weakly coupled cells it
is possible yo use a low order of Gi, in test2 2nd order.
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Figure 5: Input impedance for dipole for test3 and 4

Threshold Ref Test3 Test4

coupling > 0:25 5th s 4th s 6th c
0:25 > coupling > 0:15 5th s 4th s 6th c
0:15 > coupling > 0:05 5th s 3rd s 5th c
0:05 > coupling > 0:01 5th s 7th c 5th c
0:01 > coupling 5th s 6th c 4th c

Time = 15625 s. Time = 9375 s. Time = 9500 s.
To be noted from �gure 5

To mix the surface and contour formulation in the same PEEC model is not
good, as can be seen in �gure 5(top).

To use a high order of Gi in the contour formulation for fullwave PEEC models
o�er (1) no good agreement compared to the reference case and (2) a speedup of
approx. 1.5.
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Speedup vs accuracy 2/2

To conclude the testing from the last section, a re�ned discretization of the dipole
is made, Test 5 in Figure 6. The cells are now 2.5mm long, ie 40 cells per dipole
'arm', and the upper freqency limit is now approx. 6GHz. This makes the un-
knowns twice as many compared to previous test, this is also noted in the com-
putation time, i.e. 40000 s. In this test the surface formulation is used with the
same order of Gaussian integration as in Test2. The results, up to 6GHz, are
displayed in Figure 6 together with the results from Test 2(valid up to 3 GHz)
and Ref (also valid up to 3GHz).
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Figure 6: Input impedance for dipole for test2 and 5
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This test shows the importance of the discretization, i.e. to use min. 20 cells
per shortest wavelength. It also shows the increase in computation time, from 3
125s to 30 000s.
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'Clocking' of computer routines

When the speedup is discussed in the previous sestion, we consider the speedup
of the complete system. This includes (1) The time it takes to perform the dis-
cretization, (2) The time it takes to calculate the partial elements and (3) The
time it takes to solve the admittance matrix to obtain the unknown node poten-
tials. For a large system, approx. >50 capacitive PEEC nodes, the discretization
time becomes less important compared to point (2) and (3). In this section the
four di�erent complex routines used in the previous sections(lpmnoc, Lpcontc,
pmnoc, PPcontc) and the soution time, for the admittance matrix method, is
'isolated' and clocked/timed. This gives raw data about the di�erent routines
used but can it can also be used to estimate the solution time(calculation and
solution) for large systems. The results are obtained on an IBM Thinkpad T20,
P3-800MHz/256Mb RAM.
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In Figure 7 the computation time for the di�erent routines for di�erent or-
der of Gaussian integration are displayed. We can for example see in the �gure
that it takes 163 ms to calculate one mutual partial inductance using the surface
formulation, lpmnoc, with 8th order of Gaussian integration.

Figure 7: Computation times for the di�erent routines
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In Figure 8 the solution time for the admittance matrix is displayed for di�erent
number of unknowns. In the upper �gure the solution time vs. nbr of unknowns
are plotted using lin-lin scale while the lower �gure shows the same for log-log
scale. In the lower �gure the solution time for larger systems has been estimated,
using a dashed line. From the �gure we can estimate the solution time, for one
frequency, for a system with 10 000 unknown PEEC nodes to 2e7 seconds (231
days).

Figure 8: Solution time for the Y-matrix method

The data in Figure 7 and 8 has been used to estimate the solution time for
a system of 60 unknowns when the surface routine has been used (5th order
of Gaussian integration) to calculate the partial elements. The solution time is
calculated as 13:3� 10�3� 60

2

2
+26:9� 10�3� 58

2

2
+3:5 � 73s: for one frequency.

This can be compared with � 510s. for seven frequencies, or 72s/freq, from Figure
1.
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Concluding remarks

This report decribes the �rst tests performed using this approach and the re-
sults should be read with care. However, the speedup is considerably and the
calculations are still done with a good accuracy. For futher work a (1) re�ned
version , discussed in the Scheme section, and (2) a non orthogonal version will
be implemented.

This report also shows on the large computation times, for the solution, using
the Techsoft Matrix library. It is clear that iterative solvers must be used for large
systems.
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