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Introduction

This report details the derivation of the MNA equations used for Partial Element Equivalent
Circuit analysis. When using the MNA method for circuit analysis, voltages and currents are
calculated at the same time from a sparse system matrix, A, by solving the linear system

Ax = b (1)

where x include the current (in time) node voltages and branch currents and b include the
source terms.

Derivation of MNA PEEC Circuit Equations

The derivation of the circuit equations start by considering the three bodies, i, j, and k, in Fig.
1 and the relationship

V = PQ (2)

where V is the potential vector (to infinity), P, the coefficient of potential matrix, Q is the
charge vector for the patches.
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Figure 1: Three bodies with individual potential and charge.

Considering only the first patch, i, gives the following equation

Vi = PiiQi + PijQj + PikQk (3)

which can be rewritten as
Vi

Pii
= Qi +

Pij

Pii
Qj +

Pik

Pii
Qk (4)

where Pαβ is the mutual coefficient of potential (describing the electric field coupling between
electrically charged bodies), Pαα is the self coefficient of potential (relating the potential to the
charge of a body), and α, β = i, j, k.

Assuming a sinusoidal steady-state condition at the frequency f = 2πω, Eq. (4) can be written
as

jω
1

Pii
Vi = jωQi + jω

Pij

Pii
e−jωτijQj + jω

Pik

Pii
e−jωτikQk (5)

2



Research Report

Where the exponential term e−jωτ describes time retardation, equal to a phase shift in the
frequency domain, between two patches. By introducing the notation

ICα = jωQα (6)

for the current leaving the corresponding body where α = i, j, k, Eq. (5) ca be written as

jω
1

Pii
Vi = ICi

+
Pij

Pii
e−jωτijICj

+
Pik

Pii
e−jωτikICk

(7)

and Fig. 1 is updated to Fig. 2.
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Figure 2: Three bodies with indicated current components.

By rearranging Eq. (7) into

ICi
= jω

1

Pii
Vi +

Pij

Pii
e−jωτijICj

+
Pik

Pii
e−jωτikICk

(8)

enables the construction of an equivalent circuit according to with the retarded current controlled
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Figure 3: Three bodies with indicated current components.
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current sources described as

ICα =
Pαβ

Pαα
e−jωταβICβ

+
Pαγ

Pαα
e−jωταγICγ (9)

and the notation pseudo-capacitance for the term jω 1

Pii
Vi as introduced in [1].

Applying the derived equations for the PEEC method allows the writing of the systems of
equation of the type in Eq. (8) in matrix form since the PEEC model cell has a well known
structure. The matrix notation is then

IC = jωFV − S′IC (10)

where IC is the patch current vector, F is a nc × nc matrix with elements of the type Fii = 1

Pii
,

V is the patch potential vector, S′ is a nc ×nc matrix with elements of the type S′

αβ =
Pαβ

Pαα
and

α 6= β, and nc is the total number of charged bodies.

The three bodies, i, j, k, in the previous figures can in the PEEC method describe the charge
distribution on different discretized parts of the same conductor between which we have con-
duction and polarization currents flowing. This assumption requires the previous figures to be
updated according to.
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Figure 4: Three bodies with indicated current components.

The structure of the basic PEEC cell enables a matrix formulation of the relationship between
IC and IL for a complete structure since











ICi
= −ILi

ICj
= ILi

−ILj

ICk
= ILj

(11)

Then the relationship IC = AT IL is obtained by defining a nC × nL connectivity matrix A

describing the currents leaving and entering each node and nL is the number of cells between
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the charged bodies. In this case nC = 3, nL = 2, and

A =

[

−1 1 0
0 −1 1

]

(12)

The usage of inter-cell currents IL enables the modeling of the magnetic coupling effects as will
be shown later and transforms Eq. (10) into

AT IL = jωFV − S′AT IL (13)

Which enables the construction of a matrix taking to account all electric effects as

S = S′ + 1 (14)

where 1 is the identity matrix. This results in the S matrix which is of dimension nc × nc with
elements of the type Sαβ =

Pαβ

Pαα
, ∀α, β. And Eq. (13) can be written as

jωFV − SAT IL = 0 (15)

The inclusion of an external current source(s) exciting one (or more) charged bodies requires the
updating of Fig. 4 into The addition of an external current source under the previous assump-
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Figure 5: Three bodies with external source terms.

tions effects the charge of the directly excited patch, but also the charges of the surrounding
patched (through the mutual electric field coupling effects described by the coefficients of po-
tentials). This results in the relationship between the equivalent circuit source vector ISEq

and
the source vector IS according to

ISEq
= SIS (16)
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where the vector IS is of size nc and a nonzero entry at position n indicates a current injected
into node n. For a PEEC model without electric field coupling ISEq

= IS . The source term is
included in Eq. (15) at the RHS resulting in

jωFV − SAT IL = SIS (17)

The Kirchoffs voltage law (KVL) applied to the basic structure of the PEEC cell produces an
equation system according to

−AV − (R + jωL)IL = VS (18)

where R is a diagonal matrix containing the d.c. resistance between the nodes, L contains the
partial inductances [2, 3], and VS is a voltage source excitation vector. The combination of Eq.
(17) and (18) in one equation system results in







−A −(R + jωL)

jωF + SYL −SAT













V

IL






=







VS

SIS






(19)

where a admittance matrix YL describing the lumped elements have been included. The equa-
tions in (19) is refereed to as the modified nodal analysis (MNA) equation system as presented
in [4, 5, 6, 7].

Time Domain MNA Equation System

The time domain equations for the solution of PEEC model problems can be derived in the same
way as for the frequency domain. The difference is the inclusion of the time retardation that is
expressed as a complex part in the partial mutual couplings for frequency domain models, Eq.
(20), while for time domain PEEC models the retardation is written as a finite time delay, Eq.
(21). The two equations below Eq. (20) and (21), displays the induced voltage in cell α due to
the magnetic field coupling with cell β.

Vαβ = jωLpαβ Iβ e−jωταβ (20)

vαβ = Lpαβ

diβ(t − ταβ)

dt
(21)
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Static MNA Equations

For static time domain PEEC models, the MNA system can be written as






−A −(R + L d
dt

)

F d
dt

+ SYL −SAT













V

IL






=







VS

SIS






(22)

Discretizing matrix Eq. (22) in time by using the Backward Euler (BE) scheme yields






−A −(R + L 1

dt
)

F 1

dt
+ SYL −SAT













Vn

InL






=







VS − L 1

dt
In−1L

SIS + F 1

dt
Vn−1






(23)

where for a fixed time step, dt, the leftmost block only has to be calculated once.

Full-wave MNA Equations

The full-wave solution of PEEC models must include the time retarded electric- and magnetic-
field couplings. The frequency domain representation through complex mutual partial elements
must be converted to individual time delays in the time domain. This results in real valued
matrix entries in the L and S-matrices and the delayed coupling of the corresponding currents
and/or potentials. Comparing the electric field coupling for the time- and frequency-domain for
a PEEC one-cell shows the difference.

Frequendy domain → Lpαβ e−jωταβ jω Iβ(ω)

Time domain → Lpαβ
d
dt

iβ(t − ταβ)

As can be seen, the time retardation expressed as a phase shift incorporated in the (complex)
mutual partial elements in the FD is expressed as a real time retardation in the coupled current
in the TD. This implies that each mutual partial element has its own coupled current(s) due to
the different delay times, and the matrix-vector-products, involving the L- and S-matrices, in
the previous equations are converted to matrix(row)-matrix(column)-products in the full-wave
time domain formulation.

Since the self terms in the L- and S-matrices are not retarded the derivation of the full-wave
equations is simplified if the self terms are separated from the mutual terms in the L- and
S-matrices according to

L = LS + LM (24)

S = SS + SM (25)

Theoretically since all electric field couplings are delayed the SS matrix would reduce to the
identity matrix 1. However, the finite time step used in the integration routine force some
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electric field couplings to be considered to be instantaneous, ie ταβ < Tstep. This result in the
moving of the instantaneous couplings in the SM matrix to the corresponding location in the
SS matrix. Substituting Eq. (24) and (25) into (22) yields







−A −(R + (LS + LM ) d
dt

)

F d
dt

+ (SS + SM )YL −(SS + SM )AT













V

IL






=







VS

(SS + SM )IS






(26)

Since the mutual coupled terms depend on previous node voltages and branch currents they are
considered to be known and therefore moved to the RHS resulting in







−A −(R + LS
d
dt

)

F d
dt

+ SSYL −SSAT













V(t)

IL(t)






= (27)







VS + LM
d
dt

IL(t − τ)

SSIS(t) + SMIS(t − τ) − SMYLV(t − τ) + SMAT IL(t − τ)







Discretizing Eq. (27) using the Backward Euler, as in Eq. (23), results in







−A −(R + LS
1

dt
)

F 1

dt
+ SSYL −SSAT













Vn(t)

InL
(t)






= (28)







VS − LS
1

dt
In−1L

(t) + LM
1

dt
[InL

(t − τ) − In−1L
(t − τ)]

SSIS(t) + F 1

dt
Vn−1(t) + SMIS(t − τ) − SMYLV(t − τ) + SMAT InL

(t − τ)







where Vn(t), Vn−1(t), InL
(t), and In−1L

(t) is the same as in Eq. (23) detailing the electromag-
netic quasi-static solution. The full-wave solution in Eq. (28) requires the storage of previous
nodal voltages V(t), branch currents IL(t), and current source excitation IS(t) to enable the
evaluation of the individually retarded electric and magnetic coupling terms. More specifically
the retarded nodal voltages-, branch currents-, and source current vectors transforms to matrices
for the full-wave case, resulting in the following matrices for each instant in time

InL
(t − τ) =















0 In1
(t − τ21) . . In1

(t − τnc1)
In2

(t − τ12) 0 . . In2
(t − τnc2)

. . . . .

. . . . .

Innc
(t − τ1nc) Innc(t − τ2nc) . . 0















(29)
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In−1L
(t − τ) =















0 In−11
(t − τ21) . . In−11

(t − τnc1)
In−12

(t − τ12) 0 . . In−12
(t − τnc2)

. . . . .

. . . . .

In−1nc
(t − τ1nc) In−1nc(t − τ2nc) . . 0















(30)

that is used with the mutual partial inductance matrix, LM in a column- (for the InL
(t − τ),

In−1L
(t−τ) matrices) row- (for the LM matrix) wise multiplication to obtain the correct retarded

magnetic field couplings of the form

Lp12

1

dt
[In2

(t − τ12) − In−12
(t − τ12)] (31)

Further, the IS(t − τ) matrix is constructed in the same way resulting in

IS(t − τ) =















0 IS(t − τ21) . . IS(t − τnc1)
IS(t − τ12) 0 . . IS(t − τnc2)

. . . . .

. . . . .

IS(t − τ1nc) IS(t − τ2nc) . . 0















(32)

that is used with the mutual partial normalized coefficient of potential matrix, SM in a column-
(for the IS(t − τ) matrix) row- (for the MM matrix) wise multiplication to obtain the correct
retarded source couplings of the form

P12

P11

IS(t − τ12) +
P13

P11

IS(t − τ13) + ... (33)

The inclusion of lumped resistances eliminates the term SMYLV(t− τ) from the RHS since the
resistive effects are instantaneous. But, for charge- and current- storing lumped components the
retarded effects has to be taken into account.
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Numerical Experiments

The derived MNA equations has been implemented in a C++ based 3D PEEC solver and tested
using the transmission line geometry depicted in Fig. 6. The results in Fig. 7 and 8 has been

L=50e-3 m R = 5 0 W S=20e-6 m

T=1e-6 m

W=20e-6 m

I S

L

Figure 6: Transmission line geometry used for numerical experiments.

verified using a combined PSpice lossy transmission line simulation for which the transmission
line parameters has been extracted using a 2D program, LinPar for Windows ver. 1.0 [8]. The
results are for a single pulse with rise time = fall time = 100ps, pulse width = 1.9ns, current
amplitude = 2mA, and the time step used in the simulations = 2ps.
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(L, P, R, τ)PEEC Simulation

Fig. 7 results are for 40 inductive cells in the length direction and 0 (zero) inductive cells for
the width and thickness directions.
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Figure 7: Near- and far-end response for TL. (L, P, R, τ)PEEC simulation.

The results are very good for this simple PEEC model, requiring no more than 3 seconds per
time step.
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(L, P, R, τ, V FI)PEEC Simulation

To account for the Skin effect and thereby improve the accuracy compared to PSpice results, a
simulation using 20 inductive cells in the length, 10 inductive cells in the width, and 0 (zero)
inductive cells in the thickness direction was used. The results are shown in Fig. 8
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Figure 8: Near- and far-end response for TL. (L, P, R, τ, V FI)PEEC simulation.

The (VFI)PEEC simulation improved the results for the transmission line, as expected. However,
the computational cost is high since the PEEC model consists of:

· 462 (82) capacitive nodes.

· 106491 (3321) part. mutual cop’s.

· 860 (80) part. self inductances.

· 369370 (3160) part. mutual inductances.

With the previous PEEC model data, Fig. 7, within the parenthesis.
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By reducing the time step to 1ps the results for the (VFI)PEEC simulation could be improved
even more, Fig. 9. However, this simulation is unstable with a undamped oscillation starting at
3.5 ns.
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Figure 9: Near- and far-end response for TL. (L, P, R, τ, V FI)PEEC simulation. Time step =
1ps.
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