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Introduction

This report details the frequency- and time- domain modified nodal analysis (MNA) circuit
equations using coupled current sources for the capacitive/electric field coupling, Fig. 1. The
report is a continuation of: J. Ekman, Derivation of MNA Circuit Equations for the PEEC
Method, UAq/LTU Research Report, Sep. 2003. This formulation is equal to the MNA-PEEC
circuit equation formulation derived by Ruehli and Garrett [1]. Other formulations uses for
example coupled voltage sources, as shown in Fig. 2
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Figure 1: Basic PEEC circuit using coupled current sources for capacitive/electric field coupling.
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Figure 2: Basic PEEC circuit using coupled voltage sources for capacitive/electric field coupling.
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The MNA FD PEEC Circuit Equations

KVL, Kirchoffs voltage law

The application of KVL to the basic PEEC cell in Fig. 1 results in

AV + (R + jωL)I = VS (1)

where R is a diagonal matrix containing the d.c. resistance between the nodes, L contains the
partial inductances [2, 3], and VS is a voltage source excitation vector.

KCL, Kirchoffs current law

The application of KCL to each no of the basic PEEC cell in Fig. 1 results in

AT I = IC (2)

where:

A is a nL x nc matrix containing the connectivity information, -1 leaving node, +1 entering
node.

I is nL x 1 vector containing the branch currents (solution).

IC is nC x 1 vector containing the current for the capacitive/electric field coupling.

IC can be further expressed as, for each node:

IC = jωCselfV − IP (3)

where:

Cself is the pseudo − capacitance to each node, Cnn = 1
pnn

.

IP is the current controlled current source (CCCS) modelling the capacitive/electric field
coupling from other surface cells. IP =

∑
∀i,i�=j

pij

ii IC where pij is complex for frequency
domain modeling.

Combining (2 and (3) gives:
AT I = jωCselfV − IP (4)

and by using the CCCS description, (4) turns into

AT I = jωCselfV −
∑

∀i,i�=j

pij

ii
IC (5)

and by using the relationship in (2) and by re-arranging, (5) can be written as

jωCselfV + PnormAT I = 0 (6)

where:
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Pnorm is a nc x nc matrix containing the normalized coefficient of potentials, with elements of
the type:

– -1, for i=j,

– -pij

pii
, for i �= j.

The resulting circuit equations are, by combining (1) and (6)
⎡
⎢⎣

jωCself PnormAT

A R + jωL

⎤
⎥⎦

⎡
⎢⎣

V

I

⎤
⎥⎦ =

⎡
⎢⎣

0

VS

⎤
⎥⎦ . (7)

To summarize the matrices:

Cself is a nc x nc diagonal matrix containing the pseudo-capacitances, Cii.

Pnorm is a nc x nc matrix containing the normalized coefficient of potentials, with elements of
the type:

– -1, for i=j,

– -pij

pii
, for i �= j.

A is a nL x nc matrix containing the connectivity information.

L is a nL x nL matrix containing the partial inductances.

V is nC x 1 vector containing is the node voltages (solution).

I is nL x 1 vector containing the branch currents (solution).

VS is nL x 1 vector containing the voltage source excitation.

The addition of an external current source under the previous assumptions effects the charge
of the directly excited patch, but also the charges of the surrounding patched (through the
mutual electric field coupling effects described by the coefficients of potentials). This require
the updating of the equation system (r.h.s.) into

⎡
⎢⎣

jωCself PnormAT

A R + jωL

⎤
⎥⎦

⎡
⎢⎣

V

I

⎤
⎥⎦ =

⎡
⎢⎣

−PnormIS

VS

⎤
⎥⎦ . (8)

The equation system in (8) is refereed to as the modified nodal analysis (MNA) equation system
as presented in [4, 5, 1, 6].
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The MNA TD PEEC Circuit Equations

The time domain equations for the solution of PEEC model problems can be derived in the same
way as for the frequency domain. The difference is the inclusion of the time retardation that is
expressed as a complex part in the partial mutual couplings for frequency domain models, Eq.
(9), while for time domain PEEC models the retardation is written as a finite time delay, Eq.
(10). The two equations below Eq. (9) and (10), displays the induced voltage in cell α due to
the magnetic field coupling with cell β.

Vαβ = jωLpαβ Iβ e−jωταβ (9)

vαβ = Lpαβ
diβ(t − ταβ)

dt
(10)

Quasi-Static, TD MNA Equations

For quasi-static time domain PEEC models, the MNA system can be written as
⎡
⎢⎣

Cself
d
dt PnormAT

A −(R + L d
dt)

⎤
⎥⎦

⎡
⎢⎣

V

I

⎤
⎥⎦ =

⎡
⎢⎣

−PnormIS

VS

⎤
⎥⎦ (11)

Discretizing matrix Eq. (11) in time by using the Backward Euler (BE) scheme yields
⎡
⎢⎣

Cself
1

∆t PnormAT

A −(R + L 1
∆t)

⎤
⎥⎦

⎡
⎢⎣

Vn

In

⎤
⎥⎦ =

⎡
⎢⎣

−PnormIS + CselfVn−1
1

∆t

VS + LIn−1
1

∆t

⎤
⎥⎦ (12)

where for a fixed time step, ∆t, the leftmost block only has to be calculated once.

Full-wave, TD MNA Equations

The full-wave solution of PEEC models must include the time retarded electric- and magnetic-
field couplings. The frequency domain representation through complex mutual partial elements
must be converted to individual time delays in the time domain. This results in real valued
matrix entries in the L and S-matrices and the delayed coupling of the corresponding currents
and/or potentials. Comparing the electric field coupling for the time- and frequency-domain for
a PEEC one-cell shows the difference.

Frequency domain → Lpαβ e−jωταβ jω Iβ(ω)
Time domain → Lpαβ

d
dt iβ(t − ταβ)

As can be seen, the time retardation expressed as a phase shift incorporated in the (complex)
mutual partial elements in the FD is expressed as a real time retardation in the coupled current
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in the TD. This implies that each mutual partial element has its own coupled current(s) due to
the different delay times, and the matrix-vector-products, involving the L- and S-matrices, in
the previous equations are converted to matrix(row)-matrix(column)-products in the full-wave
time domain formulation.

Since the self terms in the L- and Pnorm-matrices are not retarded the derivation of the full-
wave equations is simplified if the self terms are separated from the mutual terms in the L- and
Pnorm-matrices according to

L = LS + LM (13)

Pnorm = −1 + PnormM (14)

where 1 is the identity matrix. Substituting Eq. (13) and (14) into (11) yields
⎡
⎢⎣

Cself
d
dt (−1 + PnormM )AT

A −(R + (LS + LM ) d
dt)

⎤
⎥⎦

⎡
⎢⎣

V

I

⎤
⎥⎦ =

⎡
⎢⎣

(1 − PnormM )IS

VS

⎤
⎥⎦ (15)

Since the mutual coupled terms depend on previous node voltages and branch currents they are
considered to be known and therefore moved to the RHS. Further, discretizing Eq. (15) using
backward/forward Euler, as in Eq. (12), the equation system is easily solved.
The full-wave solution requires the storage of previous nodal voltages V(t), branch currents
IL(t), and current source excitation IS(t) to enable the evaluation of the individually retarded
electric and magnetic coupling terms.
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