FR2 Partikulär lisn. slutet
Generaliserade integraler ($\operatorname{kap} 6.7,16.2$)
forts:
FII

$$
\begin{equation*}
e^{i \theta}=\cos \theta+i \sin \theta \tag{2}
\end{equation*}
$$

kar. elu.

$$
\begin{aligned}
& r^{2}+2 r+2=0 \\
& r=-1 \pm \sqrt{1-2} \\
& r=-1 \pm i \\
& y_{n}=e^{-x} \cdot\left(c_{1} \cdot \cos x+C_{2} \sin x\right)
\end{aligned}
$$

Ansats: $u_{p}=(A x+B) \cdot e^{(1+i) x}$
Allm. polynom - exp funk.
till d.e (2)

$$
\begin{aligned}
& u_{p}^{\prime}=A \cdot e^{(1+i) x}+(A x+B)(1+i) e^{(1+i) x} \text { ar } \\
&= e^{(1+i) x} \cdot(A+(A x+B)(1+i)) \\
& u_{p}^{\prime \prime}=e^{(1+i) x} \cdot(1+i) \cdot(A+(A x+B)(1+i))+ \\
&+e^{(1+i) x} \cdot(A+A i) \\
&= e^{(1+i) x} \cdot(A(1+i)+(A x+B) 2 i+A+A i) \\
&=e^{(1+i) x}(2 A+2 A i+(A x+B) 2 i) . \\
&i n . \quad i \text { d.e } 2)
\end{aligned}
$$

$(1+i)^{2}=$

$$
1^{2}+2 i-1=2 i
$$

$$
\begin{array}{r}
e^{(1+i)^{x} x} \cdot[\underbrace{2 A+2 A i+(A x+B) 2 i}_{y^{\prime \prime}}+2\left(\frac{A+A x+A x i+B+B i)}{y^{\prime}}+\right. \\
+2 \cdot(A x+B)]=x \cdot e^{(1+i) x}
\end{array}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
x: \quad 2 A \bar{i}+2 A+2 A i+2 A=1 \\
x^{0}: \quad 2 A+2 A i+2 B i+2 A+2 B+2 B i+2 B=0
\end{array}\right\} \\
& \left\{\begin{array}{l}
A(4+4 i)=1 \\
A(4+2 i)+B(4+4 i)=0
\end{array}\right. \\
& A=\frac{1}{4+4 i}=\frac{1}{4} \frac{1}{(1+i)(1-i)}=\frac{1}{8}(1-i) \\
& 1^{2}+1^{2} \\
& \text { p.s.s. } \quad B=\frac{1}{16}(-1+2 i) \\
& \because \quad u_{p}=(A x+B) \cdot e^{(1+i) x}=\left(2 \cdot \frac{1}{8}(1-i) x+\frac{1}{16}(-1+2 i)\right) e^{(1+i) x} \\
& \text { S8k: } y_{p}=\operatorname{lm} \text { (up) } \\
& y_{p}=\operatorname{lm}\left[\frac{(2 x-2 x i-1+2 i)}{16} \cdot e^{x} \cdot e^{i x}\right]= \\
& =\cos x+i \sin x \\
& =\operatorname{lm}\left[\frac{e^{x}}{16}((2 x-1)+i \cdot(2-2 x))(\cos x+1 \sin x+i \sin x)\right] \\
& =\operatorname{lm}\left[\frac{e^{x}}{16} \cdot\left(\frac{(2 x-1) \cos x}{}+\frac{i \cdot(2 x-1) \cdot \sin x}{\left.-\frac{i(2-2 x) \cos x}{-(2-2 x) \sin x}\right)}\right] .\right. \\
& y_{p}=\frac{e^{x}}{16}((2 x-1) \cdot \sin x+(2-2 x) \cdot \cos x)
\end{aligned}
$$

FN
$9.30 \mathrm{c})$

$$
\begin{aligned}
y^{\prime \prime}-3 y^{\prime}+2 y & =\underbrace{e^{3 x} \cdot \underbrace{\sin x}_{\ln e^{i x}}} \\
e^{1 x} & =\operatorname{lm}\left(e^{3 x} \cdot e^{i x}\right) \\
H L & =\operatorname{lm}\left(e^{(3+i) x}\right)
\end{aligned}
$$

kar. ekv. $\quad r_{1}=2$

$$
y_{h}=C_{1} \cdot e^{2 x}+c_{2} e^{1 x}
$$

L8s: $u^{\prime \prime}-3 u^{\prime}+2 u=e^{(3+i) \times}$ (2)
Sok: $y_{p}=\operatorname{lm}\left(u_{p}\right)$
Ansats: $u_{p}=A \cdot e^{(3+i) x}$

$$
\begin{aligned}
& u_{p}^{\prime}=A(3+i) \cdot e^{(3+i) x} \\
& u_{p}^{\prime \prime}=A(8+6 i) \cdot e^{(3+i) x}
\end{aligned}
$$

$$
\begin{align*}
& (3+i)^{2}= \\
& 9+6 i-1 \tag{2}\\
& =8+6 i
\end{align*}
$$

$A \cdot e^{(3+i) x} \cdot[(8+6 i)-3(3+i)+2]=e^{(3+i) x}$

$$
A(1+3 i)=1
$$

$A=\frac{1(1-3 i)}{(1+3 i)(1-3 i)}=\frac{1-3 i}{10}$

$$
\begin{aligned}
& \because u_{p}=A \cdot e^{(3+i) x}=\frac{1-3 i}{10} \cdot e^{3 x} \cdot e^{i x} \\
&=\cos x+i \sin x \\
& y_{p}=\ln \left(u_{p}\right)= \\
&=\operatorname{lm}\left[\frac{(1-3 i)}{10} \cdot e^{3 x} \cdot(\cos x+i \sin x)\right] \\
&=\operatorname{lm}\left[\frac{e^{3 x}}{10} \cdot(1-3 i)(\cos x+i \sin x)\right]= \\
&=\ln [\frac{e^{3 x}}{10} \cdot(\underline{\cos x}+i \cdot \sin x-3 i \cos x-\underbrace{-\frac{3 i n}{2} \cdot \sin x}_{-3})] \\
& y_{p}=\frac{e^{3 x}}{10} \cdot(\sin x-3 \cos x)
\end{aligned}
$$

$A L . \quad y(x)=y h+y_{p}=\ldots$.

Blode 3: Serier och summor

$$
0!=1
$$

Mac Laurin polynom

$$
e^{x} \approx 1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}=\frac{x^{0}}{0!}+\frac{x^{1}}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}
$$

Summa

$$
=\sum_{k=0}^{3} \frac{x^{k}}{k!}=\frac{x^{0}}{0!}+\frac{x^{1}}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}
$$

ex) Kapital tilluāx $25 \% /$ ar.

$$
\begin{aligned}
& \quad k \cdot 1.25^{a^{a r}=2 k} \\
& \sum_{k=0}^{a r} k \cdot 1.25^{k}=k \cdot \sum_{k=0}^{a^{a} r} 1.25^{k}= \\
& = \\
& K \cdot\left(1.25^{0}+1.25^{1}+1.25^{2}+\ldots 1.25^{a^{c}}\right] \\
& K \cdot\left[1+1.25+1.25^{2}+\cdots\right.
\end{aligned}
$$

Koustant kuat \Rightarrow geometrish summa
sid 41.

$$
\begin{gathered}
a+a q+a q^{2}+\cdots+a q^{n}= \\
a\left(1+q+q^{2}+\cdots+q^{n}\right)= \\
=\sum_{k=0}^{n} a \cdot q^{k}=\frac{a \cdot\left(1-q^{n+1}\right)}{1-q}
\end{gathered}
$$

F12_1.notebook

$$
\begin{gathered}
\sum_{k=1}^{\infty} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots . \\
v^{\text {ráxande serie }} \\
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots \cdots \cdot \frac{1}{2}=2 \\
\text { summa }=\frac{1 \cdot\left(1-\frac{1}{2}^{n}\right)}{1-\frac{1}{2}} \rightarrow \frac{1-0}{\frac{1}{2}}=2
\end{gathered}
$$

$$
\text { Summan konvergerar mot } 2 .
$$

Generali'sevade integraber
Typ I: Integrations grànserna inte begrànsade

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{1}{x^{2}} d x=\lim _{w \rightarrow \infty} \int_{1}^{\omega} \bar{x}^{2} d x \\
& \frac{x^{-1}}{-1}=\frac{-1}{x} \quad=\lim _{w \rightarrow \infty}\left[\frac{x^{-1}}{-1}\right]_{1}^{w}= \\
& =\lim _{\omega \rightarrow \infty}\left[\frac{-1}{x}\right]_{1}^{\omega}= \\
& =\lim _{\omega \rightarrow \infty}\left(-\frac{1}{\omega}-\left(-\frac{1}{1}\right)\right)=1
\end{aligned}
$$

Den generalisevade integralen hor ett grāusuärde och är därfor konvergent

