F15-16] Potensserier.

$$
\text { FN 10.1 c) } \begin{aligned}
\sum_{k=1}^{\infty} \underbrace{\frac{1}{k^{2}+2 k}}_{a_{k}} & =\frac{1}{1+2}+\frac{1}{4+4}+\frac{1}{9+6}+\cdots \\
& =\frac{1}{3}+\frac{1}{8}+\frac{1}{15}+\cdots
\end{aligned}
$$

$\sum_{k=1}^{\infty} \frac{1}{k}$ (2) konvergent ty p-serie med $p=2>1$
(1) Integral kriteriet:

$$
\int_{1}^{\infty} \frac{1}{x^{2}+2 y} d x \text { kour } \Rightarrow \sum a_{k} \text { konv }
$$

(2) Jamforelsekrit.

$$
\begin{aligned}
0<a_{k}<\frac{1}{k^{2}+2 k}<\frac{1}{k^{2}+0}= & \frac{1}{k^{2}}=b_{k} \\
& \sum \frac{1}{k^{2}} \text { konv }
\end{aligned}
$$

(3) Kvotkrileriet:

$$
\begin{aligned}
\frac{a_{k+1}}{a_{k}} & =\frac{\frac{1}{(k+1)^{2}+2(k+1)}}{\frac{1}{k^{2}+2 k}}=\frac{\frac{1}{(k+1) \cdot(k+1+2]}}{\frac{1}{k(k+2)}}=\frac{k(k+2)}{(k+1)(k+3)}= \\
& =\frac{k^{2} \cdot\left(1+\frac{2}{k}\right)}{k^{2} \cdot\left(1+\frac{1}{k}\right)\left(1+\frac{3}{k}\right)} \rightarrow \frac{1+0}{(1+0)(1+0)}=1 \quad \text { da } k \rightarrow \infty
\end{aligned}
$$

\because kan ej avgora konvergens med kuottriteriet.
forts summan

$$
\begin{aligned}
& S_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}+2 k} \\
& \text { Partial brábsuppdelming } \\
& \text { Ansals. } \\
& \frac{1}{k^{2}+2 k}=\frac{1}{k(k+2)}=\frac{A}{k}+\frac{B}{k+2} \\
& 1=A(k+2)+B k \\
& \left.k: \quad \begin{array}{rl}
0 & =A+B \\
1 & =2 A
\end{array}\right\} \quad B=-1 / 2 \\
& \left.k^{\circ}: \quad 1=2 A\right\} \quad A=1 / 2 \\
& S_{n}=\sum_{k=1}^{n}\left(\frac{1 / 2}{k}-\frac{1 / 2}{k+2}\right)=\frac{1}{2} \cdot \sum_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{k+2}\right)= \\
& =\frac{1}{2}\left[\left(\frac{1}{1}-\frac{1}{1+2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{1}{7}\right)+\left(\frac{1}{4}-\frac{1}{6}\right)+\ldots+\left(\frac{1}{n}-\frac{1}{n}+2\right)\right] \\
& =\frac{1}{2}\left(1+\frac{1}{2}+0-0 \cdots-\frac{1}{n+1}-\frac{1}{n+2}\right) \\
& \lim _{n \rightarrow \infty} S_{n}=S=\frac{1}{2}\left(1+\frac{1}{2}-0-0\right)=\frac{3}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { FN } \\
& \text { 10. } 2 \text { a) } \sum_{k=1}^{\infty} \frac{2}{3^{k}}=\frac{2}{3}+\frac{2}{3^{2}}+\cdots \\
& =2 \cdot \sum_{k=1}^{\infty}\left(\frac{1}{3}\right)^{k}= \\
& =2 \cdot\left(\frac{1}{3}+\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{3}+\ldots\right) \\
& =2 \cdot \frac{1}{3}\left(1+\frac{1}{3}+\left(\frac{1}{3}\right)^{2}+\cdots\right) \\
& \begin{array}{l}
\text { konstant kuot }=\frac{1}{3}<1 \\
\Rightarrow \text { Geometrish }
\end{array} \\
& \begin{array}{c}
\text { sats } 16.3 \\
\operatorname{sid}_{4} 9
\end{array} \\
& =\frac{2}{3} \cdot \frac{1}{2 / 3}=1
\end{aligned}
$$

$\because \sum_{k=1}^{\infty} \frac{2}{3^{k}}$ konuergerar mot summan 1 .

Konvergensteriterier:

$$
\sum_{n=1}^{\infty} a_{n}
$$

1) inlegralkrit.
2) Jämforel sekrit.
3) Kuotkriteriet
4) Rot Kriteriet

Rotkriteriet:
Om $\left(a_{n}\right)^{\frac{1}{n}}=\sqrt[n]{a_{n}} \rightarrow L<1$ da $a^{c} n \rightarrow \infty$ àr serien konvergent.
ex) $\sum_{n=1}^{\infty} \underbrace{\frac{1}{n^{n}}}_{=a_{n}}$

$$
\begin{gathered}
\frac{\text { Rotkriteri et }}{\sqrt[n]{a_{n}}}=\sqrt[n]{\frac{1}{n^{n}}}=\left(\frac{1}{n^{n}}\right)^{\frac{1}{n}}=\frac{1^{\frac{1}{n}}}{\left(n^{n}\right)^{\frac{1}{n}}}=\frac{1}{n^{\frac{n}{n}}}=\frac{1}{n} \\
\xrightarrow[\longrightarrow]{\longrightarrow} \text { da } n \rightarrow \infty
\end{gathered}
$$

$\because \sum a_{n}$ är konvergent eul. rotkriteried.
ex) $\sum_{n=1}^{\infty} \underbrace{\frac{2^{n+1}}{n^{n}}}_{=a_{n}}$. kouv/div?
$\sqrt[\text { Rotkrit. }]{\sqrt[n]{a_{n}}}=a_{n}^{\frac{1}{n}}=\left(\frac{2^{n+1}}{n^{n}}\right)^{\frac{1}{n}}=\frac{\left(2^{n} \cdot 2\right)^{\frac{1}{n}}}{\left(n^{n}\right)^{\frac{1}{n}}}=$

$$
\begin{aligned}
& \left(a^{b}\right)^{c}=a^{b \cdot c} \quad(a \cdot b)^{c}=a^{c} \cdot b^{c} \\
& =\frac{\left(2^{n}\right)^{\frac{1}{n}} \cdot 2^{\frac{1}{n}}}{n}=\frac{2!2^{\frac{1}{n}} \cdot}{n} \rightarrow 2^{0}=1 \\
& \rightarrow 0<1
\end{aligned}
$$

do
$\because \sum a_{n}$ àr kouv. eul. rot.kriteriet. dà $n \rightarrow \infty$

IN 10.3 a$)$

$$
\begin{aligned}
& \begin{array}{l}
\sum_{k=1}^{\infty} \frac{1}{k(k+1)(k+2)} \text { for att } \\
\frac{1}{k(k+1)(k+2)}=\frac{1 / 2}{k}+\frac{-1}{k+1}+\frac{1 / 2}{k+2}
\end{array} \\
& \text { for at bestàmina summan } \\
& S_{n}=\sum_{k=1}^{n}\left(\frac{1 / 2}{k}-\frac{1}{k+1}+\frac{1 / 2}{k+2}\right)=\frac{1}{2} \cdot \sum_{k=1}^{n}\left(\frac{1}{k}-\frac{2}{k+1}+\frac{1}{k+2}\right)= \\
& =\frac{1}{2}\left[\left(\frac{1}{1}-\frac{2}{2}+\frac{1}{3}\right)+\left(\frac{1}{2}-\frac{2}{3}+\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{2}{4}+\frac{1}{5}\right)+\left(\frac{1}{4}-\frac{2}{5}+\frac{1}{6}\right)+\left(\frac{1}{5}-\frac{2}{6}+\frac{1}{7}\right)+\right. \\
& =\frac{1}{2}\left(1-1+\frac{1}{2}+0+\frac{1}{n+1}-\frac{2}{n+1}+\frac{1}{n+2}\right) . \\
& d^{c} n \rightarrow \infty: \\
& \lim _{n \rightarrow \infty} S_{n}=\frac{1}{2}\left(1-1+\frac{1}{2}+0\right)=\frac{1}{4}
\end{aligned}
$$

Partial lorackesuppdeluiny \rightarrow Teleskopserie.

$$
\text { Ex) } \sum_{n=1}^{\infty} \underbrace{\frac{(2 n)!}{(n!)^{2}}}_{a_{n}}
$$

Kvotkritorict - Gra vid fokulteter.

$$
\begin{aligned}
& \frac{a_{n+1}}{a_{n}}=\frac{\frac{(2(n+1)!!}{[(n+1)]^{2}}}{\frac{(2 n)!}{(n!)^{2}}}=\frac{(2 n+2)!\cdot n!n!}{(n+1)!(n+1)!\cdot(2 n)!}= \\
& (2(n+1))!=(2 n+2)! \\
& =(2 n+2) \cdot(2 n+1) \cdot \underbrace{(2 n) \cdots}_{(2 n)!}=(2 n+2) \cdot(2 n+1)(2 n)! \\
& (n+1)!=(n+1) \cdot \underbrace{n \cdot(n-1) \cdots 1}_{=n!} \\
& 4!=4 \cdot 3 \cdot 2 \cdot 1=24 \\
& =(n+1) \cdot n! \\
& \frac{a_{n+1}}{a_{n}}=\frac{(2 n+2)(2 n+1) \cdot(2 n)!\cdot 2 n!\cdot n!}{(n+1) \cdot n!\cdot(n+1) n!\cdot(2 n)!}= \\
& =\frac{2(n+1)(2 n+1)}{(n+1)(n+1)}=\frac{2 n \cdot\left(2+\frac{1}{n}\right)}{n \cdot\left(1+\frac{1}{n}\right)} \rightarrow \frac{2 \cdot(2+0)}{1+0}=4
\end{aligned}
$$

\because serien är divergent aul kvot.knit.

$$
\text { ty } \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=4>1
$$

Potensserier t.ex.\{ $\begin{aligned} & \text { Maclaurin serie } \\ & \text { Taylor serie }\end{aligned}$
En serie med en variabel...... i termerna
Som bildar et "oändist polynom".

$$
\sum_{k=0}^{\infty} c_{k} \cdot x^{k}=c_{0}+c_{1} \cdot x+c_{2} \cdot x^{2}+c_{3} x^{3}+\ldots \cdots
$$

Geometrisk serie är en potensserie med $c_{k}=1 \forall k$

$$
\sum_{k=0}^{\infty} x^{k}=\underbrace{1+x+x^{2}+x^{3}+\ldots}_{\cdot x}
$$

En avhuggen (trunkerad) potensserie bildar et polynon

När konvergeran potenssenien, dus for vilka x ?

- tlitta konvergens omrade till x.
- Bestämma konvergensradie (R)

Till varje potensserie $\sum_{k=0}^{\infty} c_{k} \cdot x^{k}$ finus ett tal R (konvergensracion) $s a^{c}$ att
serien är konvergent $\quad \forall|x|<R$

$$
\begin{array}{ll}
\text { divergent }
\end{array} \quad \forall|x|>R
$$

Om $R=\infty \Rightarrow$ serien konv for alla x

$$
R=0 \quad \Rightarrow \quad 11 \quad \text { omm } x=0
$$

$D_{a}^{c} \quad x= \pm R$ kan ej kow/a'v avgoras.
ex) $\sum_{k=0}^{\infty} \underbrace{5^{k} \cdot x^{k}}_{a_{k}}=1+5 x+25 x^{2}+\cdots$
$\frac{\text { Kvotkrit. }}{\frac{a_{k+1}}{a_{k}}}=\frac{5^{k+1} \cdot x^{k+1}}{5^{k} \cdot x^{k}}=\frac{5^{k} \cdot 5 \cdot x^{k} \cdot x}{5^{k} \cdot x^{k}}=5 x$
konvergevar on $|\bar{s} x|<1$ enl. kyotkrit.

$$
|x|<\frac{1}{5}=\mathbb{R}
$$

- Konvergeus radi e: $R=\frac{1}{5}$
- konvergens omrăde: $\quad-\frac{1}{5}<x<\frac{1}{5}$

