$\neq 2$

$$
\begin{aligned}
& \text { Ô 2.7. a) } \begin{aligned}
z_{1}=\frac{1}{(1-i)} \frac{(1+i)}{(1+i)} & =\frac{1+i}{1^{2}-i^{2}}=\frac{1+i}{1+1}=\frac{\frac{1}{2}+\frac{i}{2}}{\operatorname{Def:}} \\
z \cdot \bar{z}=(x+i y)(x-i y) & =x^{2}-(i y)^{2} \\
& =x^{2}-i^{2} y^{2} \\
& =x^{2}+y^{2} \quad \text { (ingen imaginar enhet) }
\end{aligned}
\end{aligned}
$$

Rep. Lis ekvationen:

$$
2 z-i \bar{z}=1+2 i
$$

Sök z

Sätt: $z=x+i y \Rightarrow$ $\bar{z}=x-i y \quad$ ins i elu.

$$
\begin{aligned}
& 2(x+i y)-i(x-i y)=1+2 i \\
& 2 x+2 y i-x i+\underbrace{i^{2} \cdot y}_{-1 \cdot y}=1+2 i \\
& 2 x+2 y i-x i-y=1+2 i \\
& \left.\begin{array}{ll}
\text { Re: } 2 x-y & =1 \\
1 m: 2 y-x & =2
\end{array}\right\} \quad\left\{\begin{array}{c}
2 x-y=1 \\
-x+2 y=2
\end{array}\right. \\
& \left(\begin{array}{cc|c}
2 & -1 & 1 \\
-1 & 2 & 2
\end{array}\right)(2) \sim\left(\begin{array}{cc|c}
-1 & 2 & 2 \\
0 & 3 & 5
\end{array}\right) \\
& B y=\frac{5}{3} \\
& -x+\frac{2 \cdot 5}{3}=2 \cdot \frac{3}{3} \\
& \frac{10-6}{3}=x=\frac{4}{3}
\end{aligned}
$$

Svar: $z=x+i y=\frac{4}{3}+i \cdot \frac{5}{3}$

Rep. $\quad|z-2 i|=|z-2|$
"Avst. wellan z och 21 " $=$ arst " " 2 ".

Salt: $z=x+i y$

$$
\begin{aligned}
& U L:|x+i y-2 i|=|x+i(y-2)|=\sqrt{x^{2}+(y-2)^{2}} . \\
& H L:|x+i y-2|=|(x-2)+i y|=\sqrt{(x-2)^{2}+y^{2}}
\end{aligned}
$$

$V L=H L \quad \sqrt{x^{2}+(y-2)^{2}}=\sqrt{(x-2)^{2}+y} \quad$ kvadrera

$$
\begin{aligned}
x^{2}+y^{2}-4 y+4 & =x^{2}-4 x+4+y^{2} \\
-4 y & =-4 x+4=4
\end{aligned}
$$

$y=x$

Óva sjāv: $\quad|z+i|=|z+2|$
(Suar: $y=2 x+\frac{3}{2}$)
dā $z=x+i y$

$$
z=x+i\left(2 x+\frac{3}{2}\right)
$$

elev. for losnings. linjen i komplexa talplanet.

L8sning ow algebraiska elevationer.
Reell polynomeler (inga $i i^{l \omega}$.) an grad $3 \Rightarrow 3$ rotler ev krmpk Gissa rot: $z=-1$
$\Rightarrow(z+1)$ àr en faktor till polynomet $\left(z^{3}+1\right)$

$$
\begin{gathered}
z^{3}+1=(z+1) \cdot(\ldots) \\
\frac{z+1}{\frac{z^{2}-z+1}{z^{3}+1}+1} \\
\frac{\left(z^{3}+z^{2}\right)}{-z^{2}} \\
\frac{\left(-z^{2}-z\right)}{z+1} \\
\frac{z+1}{0}
\end{gathered}
$$

polynomdiv

$$
\begin{aligned}
& z^{2}-z+1=0 \\
& z=\frac{1}{2} \pm \sqrt{\frac{1}{4}-1 \cdot \frac{4}{4}} \\
& =\frac{1}{2} \pm \sqrt{-\frac{3}{4}} \\
& i^{2}=-1
\end{aligned}
$$

Suar: $\left\{\begin{array}{l}z_{1}=-1 \\ z_{2}=\frac{1}{2}+i \frac{\sqrt{3}}{2} \\ z_{3}=\frac{1}{2}-i \frac{\sqrt{3}}{2}\end{array}>\begin{array}{l}\text { Varandras, } \\ \text { koujngat! } \\ \text { Gäller for }\end{array}\right.$

$$
z=\frac{1}{2} \pm \sqrt{\frac{3 i^{2}}{4}}
$$

$$
z=\frac{1}{2} \pm \frac{i \sqrt{3}}{2}
$$

polynom ekv. med reella koefficienter
Dus. I reella ekv. forckommer kumplexa rotter i konjugerande par; Ār z, rot är àven det komplexa konjugatet: $\overline{\bar{z}}$, rot.

Komplext polynom
ex)

$$
z^{2}-2 i=0
$$

$$
z^{2}=2 i \quad(*)
$$

$$
\text { Sátt: } z=x+i y \quad \begin{array}{ll}
& x \in \mathbb{R} \quad(z \in \mathbb{C}) \\
y \in \mathbb{R}
\end{array}
$$

$$
z^{2}=(x+i y)^{2}=\underbrace{x^{2}+2 x y i-y^{2}=2 i} \quad x^{2}=y^{2}
$$

Re: $\left.x^{3}-y^{2}=0\right\} x= \pm y$

$$
\operatorname{lm}: 2 x y=2\} \Leftrightarrow x=\frac{1}{y}
$$

$$
\begin{aligned}
\left(\frac{1}{y}\right)^{2}-y^{2} & =0 \\
\frac{1}{y^{2}} & =y^{2} \\
1 & =y^{4} \\
y^{2} & =(\pm) 1 \quad y \in \mathbb{R} \quad \because y^{2} \neq-1 \\
y & = \pm 1 \quad \Rightarrow \quad \text { "samma } \\
\because z & =x+i y
\end{aligned}
$$

Svar: $z= \pm(1+i)$
ex) $z^{2}+4 i z-4-2 i=0$

- Kuadratkompl.

$$
\begin{aligned}
& (z+2 i)^{2}-(2 i)^{2}-4-2 i=0 \\
& (\underbrace{2+2 i})^{2}+4(-4-2 i=0 \\
& =\omega \\
& \omega^{2}-2 i=0 \\
& \omega^{2}=2 i \\
& \text { sath } \omega=x+i y \\
& \omega= \pm(1+i) \\
& w=z+2 i \quad \Leftrightarrow \\
& z=\omega-2 i \Rightarrow z_{1}=1+i-2 i \quad \text { eller } z_{2}=-1-i-2 i \\
& z_{1}=1-i \\
& z=x+i y
\end{aligned}
$$

Komplex 2: a grads elur.

Polára koordinater Viktigt!

$$
z=x+i y=a+i b
$$

Normalform $=$ Rektangulor form
(x, y) kallas rektangulâra leoord. = Cartesisk form.

Polára koordinater. (r, θ) där $\left[r=|z|\right.$ beloppet av $z=\sqrt{x^{2}+y^{2}}$ $\theta=\arg (z) \quad \operatorname{argumentet}$ till z.

$$
\begin{array}{r}
\cos \theta=\frac{x}{r} \Rightarrow\left\{\begin{array}{l}
x=r \cdot \cos \theta \\
\sin \theta=\frac{y}{r} \Rightarrow \\
y=r \cdot \sin \theta
\end{array}\right. \\
\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{y}{x} \\
\theta=\arctan \frac{y}{x}
\end{array}
$$

$$
\begin{gathered}
x=r \cdot \cos \theta \quad \text { in } i \\
y=r \cdot \sin \theta \\
z=\frac{r \cdot \cos \theta+i \cdot r \cdot \sin \theta=}{z=r \cdot(\cos \theta+i \cdot \sin \theta)}
\end{gathered}
$$

ins $z=x+i y \quad g r r$

Polar form.
ex) $z_{1}=-1$ till polar form.

$$
\begin{array}{r}
r=|z|=1 \\
\theta=\pi \\
z_{1}=1 \cdot(\cos \pi+i \sin \pi)
\end{array}
$$

ex)

$$
\begin{aligned}
& z_{2}=-i=\underbrace{1 \cdot\left(\cos \left(-\frac{\pi}{2}\right)+i \cdot \sin \left(-\frac{\pi}{2}\right)\right)} \\
& z_{3}=2 i-2=r \cdot(\cos \theta+i \sin \theta) \\
& r=1 z_{3} \mid=\sqrt{(-2)^{2}+2^{2}}=\sqrt{8} \quad \text { Alt. } \theta=\frac{\pi}{4}+\underbrace{\arctan \left(\frac{2}{-2}\right)}_{=-\frac{\pi}{4}}=\frac{3 \pi}{4} \\
& \theta=\frac{3 \pi}{4} \\
& z_{3}=\sqrt{8}\left(\cos \frac{3 \pi}{4}+i \cdot \sin \frac{3 \pi}{4}\right)
\end{aligned}
$$

