Untitled.notebook

$$\begin{array}{c} \boxed{F2} \\ & & \\ &$$

$$\begin{pmatrix} 2 & -1 & | & 1 \\ -1 & 2 & | & 2 \end{pmatrix} \begin{pmatrix} 2 & 5 \\ 2 & 0 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & | & 2 \\ 0 & 3 & | & 5 \end{pmatrix} \qquad \begin{array}{c} \overline{3} & \overline{3} = 5 \\ -x + 2 \cdot 5 \\ \overline{3} = 2 \cdot \frac{3}{3} \\ 16 - 6 \\ \overline{3} & \overline{3} = \frac{x}{3} \\ \end{array}$$

Svan: $z = x + iy = \frac{4}{3} + i \cdot \frac{5}{3}$

1

Rep.
$$|2-2i| = |2-2|$$

"Avsl. mellan z och 2i' =
avst "" " 2 ".
Salt: $(2 = x + iy)$
VL: $|x+iy-2i| = |x+i(y-2)| = \sqrt{x^2 + (y-2)^2}$.
HL: $|x+iy-2| = |(x-2) + iy| = \sqrt{(x-2)^2 + y^2}$

$$VL = HL \qquad \sqrt{x^{2} + (y \cdot z)^{2}} = \sqrt{(x - z)^{2} + y} \qquad kvadhera$$

$$x^{2} + y^{2} - 4y + 4 = x^{2} - 4x + 4 + y^{2}$$

$$-4y = -4x + 4 + 4$$

$$y = x \qquad elw. \quad \text{for } losnings - linjien i$$

$$komplexa = last planed.$$

$$2 \qquad (Svar: y = 2x + \frac{3}{2})$$

$$dar \quad z = x + i (2x + \frac{3}{2})$$

$$\frac{185ning}{2} \frac{6V}{2} algrbraiska} elwahioner.$$

$$ex) = 2^{3}+1 = 0$$
Reell polynomelw (inga i i elwi)
aw grad 3 => 3 roller ev kmpk
Gissa rot: 2=-1
=> (2+1) ar en faktor till polynomet (2³ti)

$$\frac{2^{3}+1}{2} = (2+1) \cdot (\dots)$$
Polynomdiv

$$\frac{2^{2}-2+1}{2} = \frac{2}{2} + \frac{1}{2}$$

$$\frac{2^{2}-2+1}{-(-2^{2}-2)}$$

$$\frac{2}{2} + \frac{1}{2} = \frac{1}{2} \pm \sqrt{\frac{1}{4}} - \frac{1}{\frac{4}{4}}$$

$$\frac{2^{2}-2+1}{-(-2^{2}-2)} = \frac{1}{2} \pm \sqrt{\frac{1}{4}} - \frac{1}{\frac{4}{4}}$$
Sbar: $\left(\frac{2}{2} = -1\right)$

$$\frac{2}{2} = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$

$$\frac{2}{2} = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$

$$\frac{2}{3} = \frac{1}{2} - i\frac{\sqrt{3}}{2}$$
Galler for

$$\frac{1}{2} = -i\frac{\sqrt{3}}{2}$$
Dis. I reella ekv. forekommer vomplexa rotler
i konjugerande par; Ar 2, rot ar zven
det komplexa konjugatet: Z, rot.

Ex) $z^2 - 2i = 0$ $2^2 = 2i$ (4) Satt: $\begin{bmatrix} z = x + iy \end{bmatrix}$ $z^{2} = (x + iy)^{2} = x^{2} + 2xyi - y^{2} = 2i$ $x^{2} = y^{2}$ Re: $x^{2} - y^{2} = 0$ $(=) x = \pm y$ Im: 2xy = 2 (=) x = 1"samma teken $\left(\frac{1}{y}\right)^2 - y^2 = 0$ $\frac{1}{y^2} = y^2$ $1 = y^{4}$ yeR ∵y²≠-1 $y^{2} = (-1)^{1}$ $y = \pm 1 => x = \pm 1$ $Z = X + i y = \frac{1 + i}{-1 - i} \text{ eller}$ * 6 $Svan: z = \pm (1+i)$

ex)
$$\underline{z^2 + 4i \underline{z} - 4 - 2i = 0}$$

• kvadratkómpi.
 $(\underline{z + 2i})^2 - (\overline{zi})^2 - 4 - 2i = 0$
 $(\underline{z + 2i})^2 + 4 - 4 - 2i = 0$
 $\omega^2 = 2i$
 $\omega = \pm (1 + i)$
 $\omega = \pm (1 + i)$
 $\omega = \pm 2 \pm 2i$ (=)

$$Z = W - 2i \Rightarrow Z_1 = 1 + i - 2i$$
 eller $Z_2 = -1 - i - 2i$
 $Z_1 = 1 - i$ $Z_2 = -1 - 3i$

$$\frac{Polara}{Re} koordinater} \qquad Viktigt!$$

$$z = x + iy = a + ib \qquad Normalform = Rektangulür
(x,y) kallas rektangulüra horrd. = Cartesisk
form.
$$y = \frac{1}{100} \frac{z}{x} Re$$

$$\frac{y}{100} \frac{$$$$

6

$$x = r \cdot \cos \theta$$

$$y = r \cdot \sin \theta$$

$$y = r \cdot \sin \theta$$

$$z = r \cdot \cos \theta + i \cdot \sin \theta$$

$$= r \cdot \cos \theta + i \cdot \sin \theta$$

$$= r \cdot \cos \theta + i \cdot \sin \theta$$

$$r = i \geq 1 = 1$$

$$\theta = \pi$$

$$z = 1 \cdot (\cos \theta + i \cdot \sin \theta)$$

$$Re$$

$$\frac{2i + 1}{22} = 1$$

$$\frac{2i + 1}{22} = 1$$

$$Re$$

$$\frac{2i + 1}{22} = 1$$

$$\frac{2i + 1}{22}$$

_

7