F25-26 Fördrdjning, Heaviside: impuls-och ramp.

FN $10.25 a) \quad(1-x) y^{\prime}=2 y \quad y=1 d a^{c} \quad x=0 \quad \Leftrightarrow \quad y(0)=1$
Satt: $y=\sum_{k=0}^{\infty} c_{k} \cdot x^{k}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots$
ger. $y^{\prime}=\sum_{k=0}^{\infty} c_{k} \cdot k \cdot x^{k-1}=\quad c_{1}+2 c_{2} x+3 c_{3} x^{2}+\ldots$.
ins i d.e.

$$
\begin{aligned}
& (1-x) \sum_{k=1}^{\infty} c_{k} \cdot k \cdot x^{k-1}=2 \sum_{k=0}^{\infty} c_{k} \cdot x^{k} \quad<
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{k=0} C_{k+1}(k+1) \vdots \\
& k=0: x^{0}: c_{1} .1 \cdot x^{0} \quad-2 c_{0} x^{0}=0 \\
& c_{1}-2 c_{0}=0 \\
& c_{1}=+2 c_{0} \\
& \text { b.v } y(0)=1 \text { ger } c_{0}=1 \\
& c_{1}=2 \\
& k \geqslant 1: \quad \sum_{k=1}^{\infty}\left[c_{k+1}(k+1)-c_{k} \cdot k-2 c_{k}\right] x^{k}=0 \\
& \text { k=1: } \quad x: c_{2} \cdot 2-c_{1}-2 c_{1}=0 \\
& c_{2}=\frac{3}{2} c_{1}=\frac{3}{2} \cdot 2=3 \\
& c_{3}=4 \\
& c_{n}=n+1
\end{aligned}
$$

$k \geqslant 1: \quad \sum_{k=1}^{\infty}\left[c_{k+1}(k+1)-c_{k} \cdot k-2 c_{k}\right] x^{k}=0$
$k=3: x^{3}: \quad c_{4} \cdot 4-c_{3} \cdot 3-2 c_{3}=0$

$$
c_{4}=\frac{5}{4} c_{3}=\frac{5}{4}
$$

$$
\begin{aligned}
& c_{0}=1 \\
& c_{1}=2 \\
& c_{2}=3 \\
& c_{n}=n+1 \\
& y=\sum_{k=0}^{\infty} c_{k} \cdot x^{k}=\underbrace{\sum_{k=0}^{\infty} \underbrace{(k+1) \cdot x^{k}}}_{a_{k}}
\end{aligned}
$$

Konvergeusrachie:
kvotkriteriet:

$$
\begin{aligned}
&\left|\frac{a_{k+1}}{a_{k}}\right|=\left|\frac{(k+2) x^{k+1}}{(k+1) x^{k}}\right|=\left|\frac{k+2}{k+1} \cdot x\right|= \\
&= \frac{k\left(1+\frac{2}{k}\right)}{k\left(1+\frac{1}{k}\right)} \cdot|x| \longrightarrow 1 \cdot|x|<1 \quad \text { da } k \rightarrow \infty \\
&-1<x<1
\end{aligned}
$$

Konvergens radie: $R=1$.
taplace transf.

5b) $\quad y^{\prime}+2 y=e^{2 t} \quad$ bv: $y(0)=1$

$$
\text { (L6) } \begin{aligned}
& \mathcal{L}\left\{g^{\}}\right\}=Y(s)=Y \\
& \mathcal{L}\left\{y^{\prime}\right\}=s \cdot Y(s)-\underbrace{y(0)}_{=1}=s \cdot Y-1 \\
& \mathcal{L}\left\{e^{2 t}\right\}=\frac{1}{s-2} \\
&(s y-1)+2 \cdot Y=\frac{1}{s-2} \\
&(s+2) \cdot Y=\frac{1}{s-2}+1=\frac{1+s-2}{s-2}=\frac{s-1}{s-2} \\
& Y=\frac{s-1}{(s-2)(s+2)}=\frac{1 / 4}{s-2}+\frac{\frac{-3}{-4}}{s+2} \\
& Y=\frac{1}{4} \cdot \frac{1}{s-2}+\frac{3}{4} \frac{1}{s+2} \\
& \sim e^{2 t} \\
& \sim e^{-2 t}
\end{aligned}
$$

inverstrans form:

$$
y(t)=\frac{1}{4} e^{2 t}+\frac{3}{4} e^{-2 t}
$$

Kansal funktion: ar 0 for $t<0$

$$
f(t)=\left\{\begin{array}{cc}
f(t) & t \geqslant 0 \\
0 & t<0
\end{array}\right.
$$

$\Rightarrow f(t)$ kansal funktion.
Fordroje funktion

$$
\begin{aligned}
& h\{f(t-3)\}=\int_{0}^{\infty} f(t-3) \cdot e^{-s t} d t= \\
& =\underbrace{\int_{0}^{3} f(t-3) e^{-s t} d t}_{=0}+\underbrace{\int_{u=t-3}^{\infty} f(t-3) e^{-s t} d t}_{\text {sātt }} \\
& \Leftrightarrow t=u+3 \\
& d t=d u \\
& t \rightarrow 3 \text { ger } u \rightarrow 0 \\
& =\int_{0}^{\infty} f(u) \cdot e^{-s(u+3)} d u= \\
& t \rightarrow \infty \text { ger } u \rightarrow \infty \\
& =\int_{0}^{\infty} f(u) \cdot e^{-s u} \cdot e^{-3 s} d u=e^{-3 s} \cdot \underbrace{\int_{0}^{\infty} f(u) \cdot e^{-s u} d u}_{F(s)}
\end{aligned}
$$

L3 $\because \mathcal{L}\{f(t-3)\}=e^{-35} \cdot \mathcal{L}\{f(t)\}$

$$
\begin{aligned}
& f(s)=\frac{1}{(s+5)^{3}}=\left.\frac{1}{s^{3}}\right|_{s \rightarrow s+5} \\
&=\left.\frac{1}{2} \cdot \frac{2}{s^{3}}\right|_{s \rightarrow s+5} \\
& \sim t^{2} e^{-5 t}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ex) } \\
& F(s)=\frac{s \cdot e^{-2 s}}{(s+1)^{2}+1} \\
& =e^{-2 s} \cdot \frac{s+1-1}{(s+1)^{2}+1} \\
& =e^{-2 s}\left(\frac{s+1}{(s+1)^{2}+1}-\frac{1}{(s+1)^{2}+1}\right) \\
& 4 \\
& \gamma \\
& \text { fordroj ning } \\
& \text { pa tidssidan }
\end{aligned}
$$

$$
\begin{aligned}
& \text { till } t=2 \\
& f(t)=\left[\cos t \cdot e^{-t}-\sin t \cdot e^{-t}\right]_{t \rightarrow t-2} \\
& f(t)= \begin{cases}\frac{\cos (t-2) \cdot e^{-(t-2)}-\sin (t-2) \cdot e^{-(t-2)}}{0} ; & t \geqslant 2 \\
& t \leqslant 2 .\end{cases}
\end{aligned}
$$

Heaviside stegfunktion

$$
=\text { unit-step function }
$$

Betecknas: $\theta(t)=H(t)=u(t)$

ex)

$$
\begin{aligned}
& \theta(3)=1 \\
& \theta(-1)=0 \\
& \theta(t-a)= \begin{cases}1 & t>a \\
0 & t<a\end{cases}
\end{aligned}
$$

ex)

$$
\begin{array}{r}
f(t)=\left\{\begin{array}{ll}
3 & t \geqslant 4 \\
0 & t<4
\end{array} \quad \Leftrightarrow\right. \\
f(t)=3 \cdot \underbrace{\theta(t-4)}_{=1 \text { da } a^{c} t>4}
\end{array}
$$

ey) 60 w lampa tands $d a^{\circ} \quad t=3$ slacks dá $t=7$.

$$
\begin{aligned}
P(t) & =\left\{\begin{array}{ll}
60 & 3 \leq t \leq 7 \\
0 & \text { f. } 0^{\prime \prime}
\end{array} \Leftrightarrow\right. \\
= & 60 \cdot\left[\begin{array}{ll}
\theta(t-3)-\theta(t-7)
\end{array}\right] \\
\text { slá par } & \text { sla av } \\
\text { dá } t=3 & \text { da } t=7 .
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}\{\theta(t)\}=\mathcal{L}\{1\}=\frac{1}{s} \\
& \mathcal{L}\{\theta(t-a)\}=e^{-a s} \cdot \mathcal{L}\{1\}=e^{-a s} \cdot \frac{1}{s} \\
& \text { fordrojd } \\
& \text { till } t=a \\
& L 3 \sqrt[L]{L f f(t-a) \cdot \theta(t-a)\}=e^{-a^{3}} \cdot \mathcal{L}\{f(t)\}} \\
& \begin{array}{l}
\text { trans } f \text { av } \\
\text { oford }
\end{array} \\
& f(t)=\left\{\begin{array}{cl}
(t-3)^{2} & t \geqslant 3 \\
0 & t<3
\end{array} \Leftrightarrow\right. \\
& f(t)=(t-3)^{2} \cdot \theta(t-3) \\
& \mathscr{L}\{f(t)\}=\mathscr{L}\left\{t^{2}\right\} \cdot e^{-3 s} \\
& =\frac{2}{8^{3}} \cdot \bar{e}^{-3 s}
\end{aligned}
$$

$$
\text { Ex) } \begin{aligned}
f(t)= & \begin{cases}t^{2} & t \geqslant 1 \\
0 & t<1\end{cases} \\
= & t^{2} \cdot \theta(t-1)= \\
= & (t-1+1)^{2} \cdot \theta(t-1)= \\
= & \left((t-1)^{2}+2(t-1)+1\right] \cdot \theta(t-1) \\
& \mathcal{L}\left\{t^{2}\right\} \quad 2 \cdot L\{t\} \quad \frac{1}{s} \quad e^{-s} \\
\mathcal{L}\{f(t)\}= & \left(\frac{2}{s^{3}}+2 \cdot \frac{1}{s 2}+\frac{1}{s}\right) \cdot e^{-s}
\end{aligned}
$$

