27-28 Integraletvation, Faltning

Rep.

Laplacetrans f. $f(t)$.

$$
\begin{aligned}
& y=k t+m \\
& k=\frac{\Delta y}{\Delta t}=\frac{50-0}{4-2}=25 \\
& 0=25 \cdot 2+m \Leftrightarrow m=-50 \\
& \because \quad y_{1}=25 t-50 \\
& -y=k t+m \\
& k=\frac{\Delta y}{\Delta t}=\frac{50-0}{7-8}=-50 \\
& 0=-50 \cdot 8+m \Leftrightarrow m=+400
\end{aligned}
$$

$$
\begin{aligned}
& f(t)=(25 t-50) \cdot[\theta(t-2)-\theta(t-4)]+50 \cdot[\theta(t-4)-\theta(t-7)]+ \\
& +(-50 t+400)[\theta(t-7)-\theta(t-8)] .= \\
& \left\{\begin{array}{l}
\text { dela opp i } \\
\text { brytpunkter }
\end{array}\right\} \\
& f(t)=\theta(t-2) \cdot[25(t-2)]+ \\
& +\theta(t-4) \cdot\left[\frac{-25 t+50+50}{-25(t-4)}\right]+ \\
& +\theta(t-7) \cdot[\underbrace{-50-50 t+400}_{-50(t-7)}]+ \\
& +\theta(t-8) \cdot(\underbrace{50 t-400}_{50(t-8)}) \\
& \mathcal{L}\{f(t)\}= \\
& e^{-2 s} \cdot \mathcal{L}\{25 t\}+ \\
& +e^{-45} \cdot \mathcal{L}\{-25 t\}+ \\
& +e^{-7 s} \cdot \mathcal{L}\{-50 t\}+ \\
& 1+e^{-85} \cdot \mathcal{L}\{50 t\}= \\
& \mathcal{L}\{f(t)\}=e^{-25} \cdot \frac{25}{s^{2}}+e^{-4 s}\left(\frac{-25)}{s^{2}}+e^{-75} \cdot\left(\frac{-50}{s^{2}}\right)+e^{-85} \cdot \frac{50}{s^{2}}\right. \\
& =\frac{25}{s^{2}} \cdot\left[e^{-2 s}-e^{-4 s}-2 e^{-7 s}+2 e^{-8 s}\right] .
\end{aligned}
$$

T. Rap 5.1

Test 1)

$$
\left\{\begin{array}{l}
x^{\prime}+x-y^{\prime}+y=0 \\
x^{\prime}-x+y^{\prime}+y=0
\end{array}\right.
$$

$$
\begin{aligned}
& x(0)=3 \\
& y(0)=4
\end{aligned}
$$

Laplace transf.

$$
\mathcal{L}\{x\}=X(s)=X
$$

$$
\mathcal{L}\{y\}=Y
$$

$$
\mathcal{L}\left\{x^{\prime}\right\}=5 \cdot X-\underbrace{X(0)}_{=3}=5 X-3
$$

$$
\mathcal{L}\left\{y^{\prime}\right\}=s \cdot Y-\underbrace{=3(0)}_{4}=s Y-4
$$

$$
\left\{\begin{array}{l}
(s X-3)+X-(s Y-4)+Y=0 \\
(s X-3)-X+(s Y-4)+Y=0
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
(s+1) x+(-s+1) y=3-4 \\
(s-1) x+(s+1) y=3+4
\end{array}\right.
$$

$$
(\underbrace{\left(\begin{array}{cc}
s+1) & (-s+1) \\
s-1 & s+1
\end{array}\right)}_{A}\binom{y}{y}=\underbrace{\binom{-1}{7}}_{b}
$$

$\left.X=\frac{\operatorname{det} A_{1}(6)}{\operatorname{det} A}=\frac{\left|\begin{array}{cc}-1 & -(s-1) \\ 7 & s+1\end{array}\right|}{\left.\left\lvert\, \begin{array}{c}s+1 \\ s-1\end{array}\right.\right)} \begin{array}{r}-(s-1) \\ s+1\end{array} \right\rvert\, \quad \frac{-(s+1)+7(s-1)}{(s+1)^{2}+(s-1)^{2}}$

$$
X=\frac{-s-1+7 s-7}{s^{2}+2 s+1+s^{2}-2 s+1}=\frac{6 s-8}{2\left(s^{2}+1\right)}
$$

$$
=3 \frac{s}{s^{2}+1}-4 \frac{1}{s^{2}+1}
$$

$\sim_{\cos t} \quad \sim_{\sin t}$
$x(t)=3 \cos t-4 \sin t$.

$$
\begin{aligned}
& y=\frac{\operatorname{det} A_{2}(6)}{\operatorname{det} A}=\frac{\left|\begin{array}{cc}
s+1 & -1 \\
s-1 & 7
\end{array}\right|}{2\left(s^{2}+1\right)}=\frac{7 s+7-(s-1)(-1)}{2\left(s^{2}+1\right)} \\
& y=\frac{8 s+6}{2\left(s^{2}+1\right)}=4 \frac{s}{s^{2}+1}+3 \cdot \frac{1}{s^{2}+1} \\
& \cos t \\
& \sim_{\sin t}
\end{aligned}
$$

Laplacetranst. as integral
Harledning:

$$
g(t)=\int_{0}^{t} f(x) d x
$$

$$
\text { Sธ̄k: } \mathcal{L}\left\{\int_{0}^{t} f(x) d x\right\}=
$$

Derivera m.a.p t.

$$
\mathcal{L}\{g(t)\}=G(s)
$$

$$
g^{\prime}(t)=\frac{d}{d t}\left(\int_{0}^{t} f(x) d t\right\}=f(t)
$$

La place trans f.

$$
\begin{gathered}
V L: \mathcal{L}\left\{g^{\prime}(t)\right\}=s \cdot G(s)-g(0) \\
H L: \mathcal{L}\{f(t)\}=F(s) \\
\because s \cdot G(s)-\underbrace{g(0)}_{?}=F(s) \\
g(0)=\int_{0}^{0} f(x) d x=0 \\
s \cdot G(s)-0=F(s) \\
\because G(s)=\frac{1}{s} \cdot F(s) \\
\because \mathscr{L}\left\{\int_{0}^{t} f(x) d x\right\}=\frac{1}{s} \cdot F(s)=\frac{1}{s} \cdot \mathscr{L}\{f(t)\} .
\end{gathered}
$$

$$
\begin{aligned}
& \frac{14 s+2}{(s+1)^{2}+4}=\frac{4(s+1-1)}{(s+1)^{2}+4}+\frac{2}{(s+1)^{2}+4} \\
&=14 \cdot \frac{s+1}{(s+1)^{2}+2^{2}}-\frac{-12}{-4+2} \cdot \frac{1}{(s+1)+4} \\
&=14 \cdot \frac{s+1}{(s+1)^{2}+2^{2}}-6 \cdot \frac{2}{(s+1)^{2}+2} \\
&=14 \cdot \frac{s}{s^{2}+2^{2}} / s \rightarrow s+1 \\
& \\
& y\left(+1=14 \cdot \cos 2 t \cdot e^{-t}-6 \cdot \frac{2}{s^{2}+2^{2}} / s \rightarrow s+1\right.
\end{aligned}
$$

Test.
22a)

$$
y(t)+\int_{0}^{t} y(x) d x=1
$$

integral ekvation.

Ssk: $y(t)$.
Laplace traus formera.

$$
\begin{align*}
& \mathcal{L}\{y(t)\}=Y(s)=Y \\
& \mathcal{L}\left\{\int_{0}^{t} y(x) d x\right\}=\frac{1}{s} \cdot Y \tag{19}\\
& \mathcal{L}\{1\}=\frac{1}{s} \\
& Y+\frac{1}{s} \cdot Y=\frac{1}{s} \quad \text { Lss at } Y \\
& Y\left(1+\frac{1}{s}\right)=\frac{1}{s} \\
& Y=\frac{1}{s\left(1+\frac{1}{s}\right)}=\frac{1}{s+1}
\end{align*}
$$

inverstrawsf.

$$
y(t)=e^{-t}
$$

Faltning_

Mult. pa tids sidan
$15 \quad t \cdot f(t)$
L4 $e^{a t} \cdot f(t)$
Qámpning/forstärkn.

Transformsidan (frelevenssidan)

$$
\begin{aligned}
-F^{\prime}(s)= & -\frac{d}{d s} \mathcal{L}\{f(t)\} \\
F(s)_{s \rightarrow s-a} & =F(s-a) \\
& =\mathcal{L}\{f(t)\}_{s \rightarrow s-a}
\end{aligned}
$$

skiftuing pà traust. sidam
$\downarrow \quad$ faltning \quad Pronvalution) p^{c} transt sidam.

$$
\begin{aligned}
& f(t) * g(t)=\quad F(s) \cdot G(s) \\
& =(f * g)(t)= \\
& =\int_{0}^{\oplus} f(t-x) \cdot g(x) d x= \\
& =\int_{0}^{t} f(x) \cdot g(t-x) d x \\
& ----\quad \text { "vikt funktion" } \\
& \mathcal{L}\{f * g(t)\}=\mathcal{L}\left\{\int_{0}^{t} f(t-x) \cdot g(x) d x\right\}=F(s) \cdot G(s)= \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}\{\underbrace{\left.\int_{0}^{t} 1 \cdot f(x) d x\right\}}_{1 * f(t)}=\mathrm{L}\{1\} \cdot \mathcal{L}\{f(t)\}= \\
& \\
& \mathcal{L}\{\underbrace{\int_{0}^{t} 1 \cdot y(t-x) d x}_{1 * y(t)}\}=\frac{1}{s} \cdot F(s) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { ex) } \\
& f(t)=\underbrace{\int_{0}^{t} \sin x \cdot \cos (t-x) d x} \\
& (\sin * \cos)(t) \quad \text { Faltningen beror an } \quad t . \\
& \mathscr{L}\{f(t)\}=\mathscr{L}\{\sin t\} \cdot \mathscr{L}\{\cos (t)\}= \\
& =\frac{1}{s^{2}+1} \cdot \frac{s}{s^{2}+1}=\frac{s}{\left(s^{2}+1\right)^{2}} \\
& =\frac{1}{2} \frac{2 s}{\left(s^{2}+1\right)^{2}} \\
& t \cdot \sin t \text { (L24) } \\
& f(t)=\frac{1}{2} \cdot t \cdot \sin t
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}\left\{\int_{0}^{t} \sin x \cdot \cos (x-t) d x\right\} & = \\
=\underbrace{\sin (t) * \cos (t)}_{\cos (t-x)} & =\cos (-\theta)=\cos \theta \\
& =\mathcal{L}\{\sin (t)\} \cdot \mathcal{L}\{\cos (t)\} \\
& =\frac{1}{s^{2}+1} \cdot \frac{s}{s^{2}+1}=
\end{aligned}
$$

Extraóuningar till Laplacetransf. (finusi Fronter)

$$
\begin{aligned}
& \text { 4. } \quad f(t)=e^{a t} * e^{b t} \\
& \mathcal{L}\{f(t)\}=\mathcal{L}\left\{e^{a t}\right\} \cdot \mathcal{L}\left\{e^{b t}\right\}= \\
& =\frac{1}{s-a} \cdot \frac{1}{s-b}=\frac{1}{(s-a)(s-b)} \\
& \frac{1}{(s-a)(s-b)}=\frac{A}{s-a}+\frac{B}{s-b}=\frac{A(s-b)+B(s-a)}{(s-a)(s-b)} \\
& \left.\begin{array}{ll}
s: & 0=A+B \\
s^{\circ}: & 1=-b \cdot A-a B
\end{array}\right\} \quad\left(\begin{array}{cc|c}
1 & 1 & 0 \\
-b & -a & 1
\end{array}\right) \sim \\
& \sim\left(\begin{array}{cc|c}
A & B & \\
1 & 1 & 0 \\
0 & b-a & 1
\end{array}\right) \quad B=\frac{1}{b-a} \quad A=-B=-\frac{1}{b-a} . \\
& \begin{array}{r}
\mathcal{L}\{f(t)\}=\frac{-1}{(b-a)} \cdot \frac{1}{(s-a)}+\frac{1}{(b-a)} \cdot \frac{1}{(s-b)} \\
\sim \\
e^{a t}
\end{array} \\
& f(t)=-\frac{1}{b-a} \cdot e^{a t}+\frac{1}{b-a} \cdot e^{b t}=e^{a t} * e^{b t .} \\
& =\int_{0}^{t} e^{a x} \cdot e^{b(t-x)} d x=\ldots \\
& \frac{12}{s^{7}}=\frac{12}{6!} \cdot \frac{6!}{s^{7}}=\frac{72}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 8 \cdot 1} \cdot \frac{6!}{s^{7}} \\
& \frac{1}{60} \cdot t^{6}
\end{aligned}
$$

$$
y(t)=t+\int_{0}^{t} y(x) \cdot \sin (t-x) d x
$$

Faltning beror ow t.
Laplacetrauss.

$$
\begin{aligned}
& Y=\frac{1}{s^{2}}+\mathcal{L}\{y\} \cdot \mathcal{L}\{\sin t\} \\
& Y=\frac{1}{s^{2}}+Y \cdot \frac{1}{s^{2}+1} \quad L \delta s u t Y \\
& Y\left(1-\frac{1}{s^{2}+1}\right)=\frac{1}{s^{2}} \\
& Y\left(\frac{s^{2}+x-x}{s^{2}+1}\right)=\frac{1}{s^{2}}=\frac{1}{s^{2}}+\frac{1}{s^{4}} \\
& Y=\frac{1\left(s^{2}+1\right)}{s^{2} \cdot s^{2}} \sim \\
& \\
& \\
& \\
& y(t)=t+\frac{1}{6} t^{3} \cdot \frac{3!}{s^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{+(3 s+9)}{t\left(s^{2}+s+2\right)}=\frac{3 s+9}{\left(s+\frac{1}{2}\right)^{2}+\frac{7}{4}} \\
&= \frac{3\left(s+\frac{1}{2}-\frac{1}{2}\right)}{\left(s+\frac{1}{2}\right)^{2}+\frac{7}{4}}+\frac{9}{\left(s+\frac{1}{2}\right)^{2}+\frac{7}{4}} \\
&= 3 \cdot \frac{\left(s+\frac{1}{2}\right)}{\left(s+\frac{1}{2}\right)^{2}+\frac{7}{4}}+2 \cdot \frac{7,5}{\sqrt{7}}\left(\frac{\sqrt{7}}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{7}}{2}\right)^{2}}\right. \\
&=\left.3 \frac{s}{s^{2}+\left(\frac{\sqrt{7}}{2}\right)^{2}}\right|_{s \rightarrow s+\frac{1}{2}}+\left.\frac{\sqrt{5}}{\sqrt{7}} \cdot \frac{\sqrt{7} / 2}{s^{2}+\left(\frac{\sqrt{7}}{2}\right)^{2}}\right|_{s \rightarrow s+\frac{1}{2}} \\
& 3 \cdot \cos \frac{\sqrt{7}}{2} t \quad e^{-\frac{1}{2} t}+\frac{\sqrt{5}}{\sqrt{7}} \cdot \sin \frac{\sqrt{7}}{2} t \quad e^{-\frac{1}{2} t}
\end{aligned}
$$

