F29 Repetition
Cramers regel - sät att $18 s a$ elw.system med entydig lisoing ex) $\{\begin{array}{rl}3 x-2 y & =6 \\ -5 x+4 y & =8\end{array} \quad \underbrace{\left(\begin{array}{rr}3 & -2 \\ -5 & 4\end{array}\right)}_{A}\binom{x}{y}=\underbrace{\binom{6}{8}}_{6}$

$$
x=\frac{6 \cdot 4-8(-2)}{3 \cdot 4-(-5)(-2)}=\frac{24+16}{12-10}=\frac{40}{2}=20
$$

$$
y=\frac{\operatorname{det} A_{2}(6)}{\operatorname{det} A}=\frac{\left|\begin{array}{cc}
3 & 6 \\
-5 & 8
\end{array}\right|}{\left|\begin{array}{cc}
3 & -2 \\
-5 & 4
\end{array}\right|}=\frac{3.8-(-5) 6}{2}=\frac{24+30}{2}=27
$$

Svar: $\left\{\begin{array}{l}x=20 \\ y=27\end{array}\right.$

$$
\text { Ex) }\left\{\begin{array}{l}
y^{\prime \prime}(t)+4 y(t)=f(t) \quad f(t)= \begin{cases}\sin t & 0 \leqslant t \leqslant \pi \\
0 & f .0^{\prime \prime} \\
y(0)=y^{\prime}(0)=0\end{cases}
\end{array}\right.
$$

S8k: $y\left(\frac{3 \pi}{2}\right)$
Skriv oun HL m.h.a. Heaviside

$$
\begin{aligned}
& f(t)=\sin t(\theta(t)-\theta(t-\pi) \\
& =\theta(t) \cdot \sin t+\theta(t-\pi) \cdot(-\sin t) \\
& =\theta(t) \cdot \sin t+\theta(t-\pi) \cdot(-\sin (t-\pi+\pi))
\end{aligned}
$$

$$
\begin{aligned}
& \text { ~o-(rardrojed } \\
& \mathscr{L}\{\sin t\}=\frac{1}{s^{2}+1}
\end{aligned}
$$

Laplace trausf.

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\frac{1}{s^{2}+1}+e^{-\pi s} \cdot \frac{1}{s^{2}+1} \\
& \mathcal{L}\{y(t)\}=Y \\
& \mathcal{L}\left\{y^{\prime \prime}(t)\right\}=s^{2} \cdot y-s \cdot \underbrace{y(0)}_{=0}-\underbrace{y^{\prime}(0)}_{=0}
\end{aligned}
$$

ius i d.e.

$$
s^{2} \cdot y+4 Y=\frac{1}{s^{2}+1}\left(1+e^{-7 s)}\right.
$$

$$
\begin{aligned}
& s^{2} \cdot Y+4 Y=\frac{1}{s^{2}+1}\left(1+e^{-\pi / s)} \quad \text { L } \quad \text { us ut } Y\right. \\
& \left(s^{2}+4\right) \cdot y=\frac{1}{s^{2}+1}\left(1+e^{-\pi s}\right) \\
& y=\frac{\left(1+e^{-\pi s}\right) \cdot 1}{\left(s^{2}+1\right) \cdot\left(s^{2}+4\right)} \\
& \frac{1}{\left(s^{2}+1\right)\left(s^{2}+4\right)}=\frac{A s+B}{s^{2}+1}+\frac{C s+D}{s^{2}+4} \\
& \cdots \text { ger } A=0=C \\
& B=1 / 3 \quad D=-1 / 3 \\
& \text { - - } \\
& y=\left(1-e^{-\pi s)} \cdot\left(\frac{1 / 3}{s^{2}+1}-\frac{1 / 3}{s^{2}+4}\right)\right. \\
& =\frac{1}{3}\left(\frac{1}{s^{2}+1}-\frac{1}{2} \cdot \frac{1 \cdot 2}{s^{2}+4}\right)-\frac{1}{3} e^{-\pi s}\left(\frac{1}{s^{2}+1}-\frac{1}{2} \frac{12}{s^{2}+4}\right) \\
& \underset{\sin t}{\sim} \sim \underbrace{\frac{1}{2} \sin 2 t} \underset{\sin t}{\sim}-\frac{1}{2} \sin 2 t \\
& y(t)=\frac{1}{3}(\sin t)-\frac{1}{6} \sin 2 t-\frac{1}{3} \theta(t-\pi) \cdot\left(\sin (t-\pi)-\frac{1}{2} \sin 2(t-\pi)\right) \\
& \text { Ssle } y\left(\frac{3 \pi}{2}\right)=\frac{1}{3} \underbrace{\sin \frac{3 \pi}{2}}_{-1}-\frac{1}{6} \underbrace{\sin 8 \cdot \frac{3 \pi}{2}}_{0}-\frac{1}{3} \cdot \underbrace{\theta\left(\frac{3 \pi}{2}-\pi\right)}_{1}(\underbrace{\sin \left(\frac{3 \pi}{2}-\pi\right)}_{1}-\frac{1}{2} \underbrace{\sin 2\left(\frac{\pi \pi}{2} \cdot \pi\right)}_{0}) \\
& \theta=-\frac{1}{3}-0-\frac{1}{3}(1-0)=-\frac{2}{3} \\
& y(t)= \begin{cases}\frac{1}{3} \sin t-\frac{1}{6} \sin 2 t & ; 0<t<\pi \\
\frac{1}{3} \sin t-\frac{1}{6} \sin 2 t-\frac{1}{3} \sin (t-\pi)+\frac{1}{6} \sin 2(t-\pi) & ; t \geqslant \pi\end{cases}
\end{aligned}
$$

Tenta maj 2015
1a) $z^{2}-(2+2 i) z+5-10 i=0 \quad$ ej reell der.
kvadrat kompl.

$$
\quad \frac{(z-(1+i))^{2}-(1+i)^{2}+5-10 i=0}{(\underbrace{z-(1+i))^{2}-\underbrace{(y+2 i+i})+5-10 i}_{=\omega}=5-12 i}=0
$$

$$
\omega^{2}=-5+12 i
$$

Sātt:

$$
\begin{array}{ll}
\text { itt: } & \omega=x+i y \\
\Rightarrow & w^{2}=(x+i y)^{2}=x^{2}+2 x y i+\underbrace{2^{2}}_{-y^{2}} \\
& x^{2}+2 x y i-y^{2}=-5+12 i
\end{array}
$$

$$
\begin{aligned}
& \text { Re: } \\
& \operatorname{lm}:
\end{aligned} \quad\left\{\begin{array}{l}
x^{2}-y^{2}=-5 \\
2 x y=12
\end{array} \quad \Rightarrow x=\frac{6}{y}\right.
$$

$$
\frac{36}{y^{2}}-y^{2}=-5
$$

$$
36-y^{4}=-5 y^{2} \quad \Rightarrow \quad y^{4}-5 y^{2}-36=0
$$

$$
\begin{aligned}
& y= \pm 3 \\
& x=\frac{6}{y}= \pm 2
\end{aligned}
$$

$$
y^{2}=\frac{5}{2} \pm \sqrt{\frac{25}{4}+36}
$$

$$
y^{2}=\frac{5 \pm 13}{2}
$$

$$
y^{2}=9
$$

$$
\because \quad w=x+i y= \pm(2+3 i)
$$

$$
y^{2}=-\frac{8}{2} \quad \begin{array}{ll}
& y \in \mathbb{R} .
\end{array}
$$

$$
\left.\begin{array}{rl}
z-(1+i) & =w \\
\hline z & = \pm(2+3 i)+(1+i) \\
z_{1} & =2+3 i+1+i=3+4 i \\
z_{2} & =-2-3 i+1+i=-1-2 i
\end{array}\right\} \quad \text { Svar }
$$

$$
\begin{aligned}
& \text { 1b) } \begin{array}{l}
z=\frac{2(1-i)}{1+i} e^{i \frac{\pi}{6}} \\
\text { S8k }|z|=\frac{|2| \cdot|1-i|}{|1+i|} \cdot\left|e^{i \frac{\pi}{6}}\right| \\
\left||-i|=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2}\right. \\
|1+i|=\sqrt{1^{2}+1^{2}}=\sqrt{2}=\frac{e^{i \theta}=\cos \theta+i \cdot \sin \theta}{} \\
\left.\left|e^{i \frac{\pi}{6}}\right|=1 \cos \frac{\pi}{6}+i \sin \frac{\pi}{6} \right\rvert\,=\sqrt{\cos ^{2} \frac{\pi}{6}+\sin ^{2} \frac{\pi}{6}}= \\
\because \quad|z|=\frac{2 \cdot \sqrt{2}}{\sqrt{2}} \cdot 1=2
\end{array}
\end{aligned}
$$

2. a) $y^{\prime \prime}+4 y^{\prime}+3 y=2 \sin x+4 \cos x$
tromogen tom:

$$
\begin{aligned}
& y_{h}=c \cdot e^{r x} \\
& y_{h^{\prime}}=c r \cdot e^{r x} \\
& y_{h^{\prime \prime}}=c r^{2} \cdot e^{r x} \\
& c \cdot e^{r x} \cdot(\underbrace{r^{2}+4 r+3}_{\text {karakteristisk ekv }})=0 \\
& r=-2 \pm \sqrt{4-3} \\
& r=-2 \pm 1<-1 \\
& \because y_{h}=c_{1} \cdot e^{-x}+c_{2} \cdot e^{3 x}
\end{aligned}
$$

partikulär losm:
Ansats:

$$
\left.\left.\begin{array}{r}
\begin{array}{r}
y_{p}=A \cdot \sin x+B \cos x \\
y_{p}^{\prime}
\end{array}=A \cos x-B \sin x \\
y_{p}^{\prime \prime}
\end{array}\right\}-A \sin x-B \cos x \quad\right\} \text { ins ide. } \begin{aligned}
&(A \cos x-B \sin x)+3(A \sin x+B \cos x)= \\
&=2 \sin x+4 \cos x
\end{aligned}
$$

$$
-A \sin x-B \cos x+4(A \cos x-B \sin x)+3(A \sin x+B \cos x)=
$$

$$
\left\{\begin{array}{l}
2 A-4 B=2 \\
4 A+2 B=4
\end{array}\right.
$$

$$
A=\frac{\left|\begin{array}{cc}
2 & -4 \\
4 & 2
\end{array}\right|}{\left|\begin{array}{rr}
2 & -4 \\
4 & 2
\end{array}\right|}=\frac{2 \cdot 2-4(-4)}{2 \cdot 2-4(-4)}=\frac{20}{20}=1
$$

$$
B=\frac{\left|\begin{array}{ll}
2 & 2 \\
4 & 4
\end{array}\right|}{20}=\frac{8-8}{20}=0 .
$$ ansatsen till y_{p}.

$$
\because \quad y_{p}=\sin x
$$

AL. $y(x)=y_{h}+y_{p}=C_{1} \cdot e^{-x}+C_{2} \cdot e^{-3 x}+\sin x$

2b)

$$
\begin{array}{ll}
(1+x) y^{\prime}+y=0 & y(x)=4 \\
(1+x) \frac{d y}{d x} & =-y \\
\int \frac{d y}{y} & =\int \frac{-d x}{1+x} \\
e & \text { kan separeras. } \\
\ln |y| & =-\ln |1+x|+C \\
\operatorname{ly} \mid & =e^{\ln \mid 1+x)^{-1}} \cdot e^{c} \\
y & \left.=C_{1} \cdot \mid 1+x\right)^{-1}=
\end{array} \quad \text { dar } C_{1}= \pm e^{c}
$$

b.v. $y(0)=4=c_{1}$

$$
\because \quad y(x)=\frac{4}{1+x}
$$

3. $\sum_{n=0}^{\infty} \underbrace{\frac{(n+1)^{2}}{n!}}=\frac{1}{0!}+\frac{2^{2}}{1!}+\frac{3^{2}}{2!}+\frac{4^{2}}{3!}+\cdots \cdot$

$$
=a_{n} \quad a_{n}=\frac{(n+1)^{2}}{n!} \rightarrow 0 \quad \text { da } n \rightarrow \infty
$$ ty $n!$ vāer

Kvotkriteriet: (bra vid fakulteter) ty nabbare on n^{2}.

$$
\begin{aligned}
& \frac{a_{n+1}}{a_{n}}=\frac{\frac{(n+2)^{2}}{(n+1)!}}{\frac{(n+1)^{2}}{n!}}=\frac{(n+2)^{2} n!}{(n+1)^{2}(n+1) \cdot n!}=\frac{n^{2}+4 n+4}{n^{3}+3 n^{2}+3 n+1} \\
& (n+1)!=(n+1) \cdot n! \\
& =\frac{n^{2}\left(1+\frac{\overrightarrow{4}^{0}+\frac{4}{n} n^{2}}{n^{2}}\right)}{n^{3}\left(1+\frac{3}{n}+\frac{3}{n^{2}}+\frac{1}{n^{3}}\right)} \rightarrow 0<1
\end{aligned}
$$

\because serien ar konv. onl. tuotleriteriet.

3b)

$$
\begin{aligned}
& \text { 36) } \begin{array}{l}
\lim _{x \rightarrow 0} \frac{x \cdot e^{-x}-\sin x}{x^{2}} \\
e^{-x}=1-x+\frac{x^{2}}{2}+\mathscr{O}\left(x^{3}\right) \\
\sin x=x-\frac{x^{3}}{3!}+\mathscr{O}\left(x^{5}\right) \\
\lim _{x \rightarrow 0} \frac{x \cdot\left(1-x+\frac{x^{2}}{2}+\mathscr{O}\left(x^{3}\right)-\left(x-\frac{x^{3}}{6}+\mathscr{O}\left(x^{5}\right)\right)\right.}{x^{2}} \\
\lim _{x \rightarrow 0} \frac{x-x^{2}+\frac{x^{3} \cdot 3}{2 \cdot 3} \mathscr{G}\left(x^{4}\right)-x+\frac{x^{3}}{6}}{x^{2}}= \\
=\lim _{x \rightarrow 0} \frac{-x^{2}+\frac{4 x^{3}}{6}+G\left(x^{4}\right)}{x^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}\left(-1+\frac{4}{6} x+0\left(x^{2}\right)\right.}{x^{2}} \\
=-1
\end{array}
\end{aligned}
$$

6.

iskub.

$$
\begin{aligned}
& V=x^{3} \\
& A=6 \cdot x^{2}
\end{aligned}
$$

- Kubeus volym autar med hast. prop. mot begränoningsyta

$$
\begin{aligned}
& \frac{d V}{d t} \quad=-k \cdot A \\
& \frac{d V}{d t}=\frac{d V}{d x} \cdot \frac{d x}{d t} \\
& =3 x^{2} \cdot \frac{d x}{d t} \quad=-k \cdot 6 x^{2} \\
& \because 3 x^{2} \frac{d x}{d t}=-k \cdot 6 x^{2} \\
& \frac{d x}{d t}=-2 k \\
& x(t)=-2 k t+C \quad(*) \\
& \text { b.v. } V(0)=V_{0}=x_{0}^{3}=(-2 k \cdot 0+C)^{3} \Leftrightarrow C=x_{0} \\
& \text { b.v. } 2 \quad V(1)=\frac{3}{4} V_{0}=\left(-2 \cdot k \cdot 1+x_{0}\right)^{3} \\
& \begin{array}{ll}
\frac{3}{4} x_{0}^{3}=\left(x_{0}-2 k\right)^{3} & \text { tredjeroten ur } \\
\left(\frac{3}{4}\right)^{1 / 3} \cdot x_{0}=x_{0}-2 k & \text { Lss at } k
\end{array} \\
& 2 t=x_{0}-\left(\frac{3}{4}\right)^{1 / 3} \cdot y_{0} \\
& k=\frac{1}{2} x_{0}\left(1-\left(\frac{3}{4}\right)^{1 / 3}\right) \text { ins } i(*) \\
& x(t)={ }^{c} x_{0}-x_{0}\left(1-\left(\frac{3}{4}\right)^{1 / 3}\right) t \\
& \text { tredjeroten ur.... } \\
& \text { Lis at } k \\
& \text { ins } 1(*)
\end{aligned}
$$

Sok fid $T d_{a}^{0} \quad x(T)=0$

$$
\begin{aligned}
0 & =x_{0}-x_{0}\left(1-\left(\frac{3}{4}\right)^{1 / 3}\right) T \\
x_{0}\left(1-\left(\frac{3}{4}\right)^{1 / 3}\right) \cdot T & =x_{0} \\
T & =\frac{x_{0}}{x_{0} \cdot\left(1-\left(\frac{3}{4}\right)^{1 / 3}\right)}=\frac{1}{1-\left(\frac{3}{4}\right)^{1 / 3}} \approx 10,93
\end{aligned}
$$

Suar: Iskuben har smalt helt efter ca $10,93 \mathrm{~h}$.

