F4 Repetition Komplexa tal
Rep FN 2.65a) $\quad z^{4}=1$
Skriv pá led: polan form:
Sant: $z=r \cdot e^{i \theta} \Rightarrow$

$$
\begin{aligned}
\text { VL: } \left.\quad \begin{array}{rl}
z^{4} & =\left(r \cdot e^{i \theta}\right)^{4}= \\
& =r^{4} \cdot e^{i 4 \theta} \\
\text { HL: } \quad 1 & =1 \cdot e^{i 0}
\end{array}\right\} \text { insi* } \\
r^{4} \cdot e^{i 4 \theta}=1 \cdot e^{i 0}
\end{aligned}
$$

beloppen: $\left\{\begin{array}{l}r^{4}=1 \Rightarrow r=1 \\ \text { arg: } \\ 4 \theta=0+2 \pi \cdot n \\ \text { Giom erioden }\end{array}\right.$

$$
\begin{aligned}
\because & \left.z=r \cdot e^{i \theta}=1 \cdot e^{i\left(\frac{\pi}{2} n\right.}\right) \\
n=0: & \begin{array}{l}
r=1 \\
\theta=\frac{\pi}{2} \cdot n
\end{array} \\
n=1: & z_{1}=1 \cdot e^{i \theta}=1 \cdot e^{i \frac{\pi}{2}}=1 \cdot(\underbrace{\cos \frac{\pi}{2}}_{0}+i \underbrace{i \theta}_{1}=\cos \theta+i \sin \theta \\
n=2: & z_{2}=-1 \\
n=3: & z_{3}=-i
\end{aligned}
$$

Svan: $z_{1,2}= \pm 1 \quad z_{3,4}= \pm i$
b) $\quad z^{4}=-4$

$$
\begin{aligned}
& \text { 0.3. 2.3) }\left|e^{x+i y}\right| \frac{d \widehat{a r} x, y \in \mathbb{R} .}{\mid e^{i \theta}=\cos \theta+i \sin \theta} \\
&\left|e^{i \theta}\right|=\sqrt{\cos ^{2} \theta+s} \\
& e^{x+i y}=e^{x} \cdot e^{i y} \\
&\left|e^{x} \cdot e^{i y}\right|=\left|e^{x}\right| \cdot \underbrace{\left|e^{i b}\right|}_{1}=e^{x} \cdot 1 \\
& \mid e^{i y \mid}=|\cos y+i \sin y|= \\
&=\sqrt{\cos ^{2} y+\sin ^{2} y}=1
\end{aligned}
$$

Tentamensuppg:
Bestäm $z \in \mathbb{C}$ där $e^{z}-1+i=0$

$$
e^{z}=1-i
$$

Sätt: $z=x+i y$
Skriv HIL i polar form:

$$
1-i=\sqrt{2} \cdot e^{i\left(\frac{\pi}{4}\right)}
$$

ar fig.

$$
\begin{aligned}
& e^{z}=1-i \\
& e^{x+i y}=\sqrt{2} \cdot e^{i\left(-\frac{\pi}{4}\right)} \\
& e^{x} \cdot e^{i y}=\sqrt{2} \cdot e^{i\left(-\frac{\pi}{4}\right)} \\
& \text { belopp: }\left\{\begin{array}{l}
e^{x}=\sqrt{2} \\
y=-\frac{\pi}{4}+2 \pi n
\end{array} \Rightarrow x=\ln \sqrt{2}=\frac{1}{2} \ln 2\right. \\
& \because \quad z=x+i y=\ln \sqrt{2}+i\left(-\frac{\pi}{4}+2 \pi \cdot n\right)
\end{aligned}
$$

$$
e^{-\pi i}+1=0
$$

"Världens vaderaste elevation"
© 2.27) $\cos 3 \theta$ uttrych med $\cos \theta$ och $\sin \theta$. de Moiures formel : $z^{n}=\left(r \cdot e^{i \theta}\right)^{n}=r \cdot e^{n} \theta=$

$$
(\cos \theta+i \sin \theta)^{n}=r^{n} \cdot(\cos n \theta+i \sin \theta \theta)
$$

$$
\begin{aligned}
& z=\frac{\cos 3 \theta}{\operatorname{Re}(z)}+i \frac{i \sin 3 \theta}{\ln (2)}=\{\text { de Moirren }\}= \\
&=(\cos \theta+i \sin \theta)^{3}=(\quad) \cdot(\quad) \cdot()= \\
&=1 \cdot \cos ^{3} \theta+3 \cdot \cos ^{2} \theta \cdot i \sin \theta+3 \cos \theta \cdot i_{-1}^{2} \cdot \sin ^{2} \theta+i_{-i}^{3} \sin ^{3} \theta= \\
&=\underbrace{\cos ^{3} \theta-3 \cos \theta \cdot \sin ^{2} \theta+i \cdot[\underbrace{3 \cos ^{2} \theta \cdot \sin \theta-\sin ^{3} \theta}]}_{-i} \begin{aligned}
& 1 \\
& \therefore \quad \cos 3 \theta=\cos ^{3} \theta-3 \cos \theta\left(1-\cos ^{2} \theta\right) \\
&=4 \cos ^{3} \theta-3 \cos \theta .
\end{aligned} \quad 1331 \\
& 14641
\end{aligned}
$$

ex)

$$
\begin{array}{ll}
\sqrt{i}=? & z=x+i y=r \cdot e^{i \theta} \\
\sqrt{i}=z & \text { kvadrera } \\
i=z^{2} &
\end{array}
$$

Sätt: $z=r \cdot e^{i \theta} \quad$ polar form $\Rightarrow z^{2}=r^{2} \cdot e^{i 2 \theta}$

$$
i=1 \cdot e^{i \frac{\pi}{2}}
$$

$$
\because \quad r^{2} \cdot e^{i 2 \theta}=1 \cdot e^{i \frac{\pi}{2}}
$$

Geloppen: $\quad\left\{\begin{array}{l}r^{2}=1 \Rightarrow r=1 \\ \text { arg: } \\ 2 \theta=\frac{\pi}{2}+2 \pi \cdot n \Rightarrow \theta=\frac{\pi}{4}+\pi \cdot n\end{array}\right.$

$$
\begin{aligned}
\because \quad z & =1 \cdot e^{i\left(\frac{\pi}{4}+\pi n\right)} \\
n=0: \quad z_{1} & =e^{i \frac{\pi}{4}}=\underbrace{\cos \frac{\pi}{4}}_{\frac{1}{\sqrt{2}}}+\underbrace{\sin \frac{\pi}{4}}_{\frac{1}{\sqrt{2}}}=\frac{1}{\sqrt{2}}(1+i) \\
n=1: \quad z_{1} & =e^{i \frac{5 \pi}{4}}=\underbrace{\cos \frac{5 \pi}{4}}_{-\frac{1}{\sqrt{2}}}+\underbrace{\frac{\sin 5 \pi}{4}}_{-\frac{1}{\sqrt{2}}}=\underbrace{-\frac{1}{\sqrt{2}}(1+i)}
\end{aligned}
$$

Svar: $\sqrt{i}= \pm \frac{1}{\sqrt{2}}(1+i)$

Alt: $z=x+i y \Rightarrow z^{2}=x^{2}+2 x y i-y^{2} \equiv i^{-}$

$$
r=|\sqrt{3}-i|=\sqrt{\sqrt{3}^{2}+(-1)^{2}}=2
$$

$$
\theta=\arctan \frac{1 m}{12 e}=\underbrace{\arctan \left(\frac{-1}{\sqrt{3}}\right)}_{-\frac{\pi}{6}}
$$

$$
\begin{aligned}
& \frac{\sqrt{3}-i}{(1+i)^{3}}= \\
& \sqrt{3}-i=r \cdot e^{i \theta} \\
& \text { Nämn. } \quad 1+i=r \cdot e^{i \phi} \\
& =\frac{2 \cdot e^{i\left(-\frac{\pi}{6}\right)}}{2^{\frac{3}{2}} \cdot e^{i\left(\frac{3 \pi}{4}\right)}}= \\
& r=(1+i)=\sqrt{2} \\
& \theta_{1}=\arctan 1=\frac{\pi}{4} \\
& =2^{1} \cdot 2^{-3 / 2} \cdot e^{i\left(-\frac{\pi}{6}-\frac{3 \pi}{4}\right)}= \\
& =2^{-1 / 2} \cdot e^{i\left(-\frac{4 \pi-18 \pi}{24}\right)}=2^{-1 / 2} \cdot e^{i\left(\frac{212 \pi}{24}\right)}= \\
& =\frac{1}{\sqrt{2}} \cdot(\underbrace{\cos \left(-\frac{11 \pi}{12}\right)}+i \underbrace{\sin \left(\frac{-11 \pi}{12}\right)}) \approx \\
& \approx-0,68-i 0,18
\end{aligned}
$$

- $i^{2} \cdot z=-z$
- $i^{3} \cdot z=i^{2} \cdot i z=-i z$
- $i^{4} \cdot z=i^{2} \cdot i^{-2} \cdot z=z$

