[F6] Differential etvationer.

Rep. Tentamens uppg. (aug-13)
$$Skriv filliande pa rektangular form: z = a+ib$$

$$(-1+i)^{-1} = \frac{1}{(-1+i)^{11}}$$

$$-1+i = r \cdot e^{i\theta} \qquad polar form$$

$$r = \sqrt{(-1)^2 + 1^2} = \sqrt{2}$$

$$\theta = \frac{34}{4}$$

$$\frac{1}{(-1+i)^{11}} = \frac{1}{\sqrt{2}! \cdot e^{i\frac{3\pi}{4}}} = \frac{1}{2^{1/2} \cdot e^{i\frac{3\pi}{4}}}$$

$$= 2^{1/2} \cdot e^{i\left(\frac{3\pi}{4} + \frac{1}{4}\right)T} = 2^{1/2} \cdot e^{i\left(\frac{3\pi}{4}\right)}$$

$$= 2^{1/2} \cdot e^{i\left(\frac{3\pi}{4} + \frac{1}{4}\right)T} = 2^{1/2} \cdot e^{i\left(\frac{3\pi}{4}\right)}$$

$$= 2^{1/2} \cdot (\cos(-\frac{\pi}{4}) + i \cdot \sin(-\frac{\pi}{4}) = 2^{1/2} \cdot (1-i) = 2^{1/2} \cdot (1-i)$$

$$= \frac{1}{(-1+i)^{11}} = \frac{1}$$

Differential elevationer D.E diffelu

ODE = Ordinara diff. elw. 1.ex 9

dâr en beroende vaniabel beror av

g(xxw)

en oberoende vaniabel.

t.ex x, t

Diff.elw ar elwationer med derivator.

. Higsta derivatan anger difficher. graatal, et ordning.

(2x) y(x) = y(x) y' = y

 $y(x) = e^x$ ar en lüsning $y(x) = C \cdot e^x$ ar allman lösning till d.e.

dar konstanten C bestams utifran

bivilker: $\begin{cases} \text{begynnel seviller} : y(0) = 3 \\ y'(0) = 8 \end{cases}$ rand villeor : y(a) = 3

Bivilkoren ger specifik, partikular lösning

F6.notebook

$$e^{x}$$
) $y'' + y = 0$
 $y'' = -y$

+
$$y = 0$$
 2:a ordin.
 $y'' = -y$ Testa: $y = \sin x$
 $y' = \cos x$
 $y'' = -\sin x = -y$ OK.

Allm. 18sh: $y(x) = C_1 \cdot \cos x + C_2 \cdot \sin x$

1-a ordn. d.e.

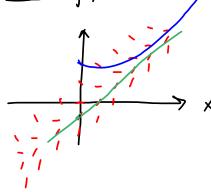
Tre tishingsmetoder:

1. Numerisk lisning - Eulers metod

2) Linjara 1:a ordn. d.e - integrerande falter

3 Separabla d.e. - separabel metod.

Riktningsfalt.



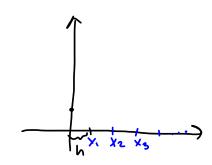
6.v.
$$y(0) = 2$$

6.v. $y(0) = -1$

vaij valfria x och y-varder och plotla y'(=lutningen) i punkten.

Numerisk lisning med tulers metad ger approximativ lisning till 1:a ordn. de

ex)
$$y' = x - y$$
 b.v: $y(0) = 1$ begynnelsevarde.
 $f(x,y)$ Steglangel: $h = |x_1 - y_0| = |x_{n+1} - x_{n+1}|$



$$X_0$$
 $X_1 = X_0 + h$
 $X_2 = X_0 + 2h$
 \vdots
 $X_n = X_0 + n \cdot h$

Harledming:
$$y' = \lim_{h \to 0} \frac{y(x+h) - y(x)}{h}$$

$$\frac{dy}{dx} = y' \approx \frac{\Delta y}{\Delta x} = \frac{y - y_0}{x_1 - x_0} = \frac{y - y_0}{h}$$

ex)
$$y' = x - y$$

b.v: $y(0) = 1$
Steplängd: $h = 0.02$
Bestäm $y(0.08)$ ned Eulers metod
 $y' \approx \frac{xy}{cx} = \frac{y_1 - y_8}{h}$ Lbs ul. y_1
 $y_1 = y_0 + h \cdot y_1'$ Eulers metod
 $h = 0.02$
 $h = 0.02$

Eulers metad han fel proportionellé mot h. $fold = O(h) = c \cdot h$

: hawarat h ger halverat fel.

$$\begin{cases} \frac{dy}{dx} = x.4 \\ y(1) = 2 \end{cases}$$
 6.0

med steglanged h = 0.2 $y' \approx \frac{\Delta y}{\Delta x} = \frac{y_1 - y_0}{h}$

$$y' \approx \frac{\Delta y}{\Delta x} = \frac{y_1 - y_2}{h}$$

	×	y	y = x.5	h.y'=0.2.y'	
6.v.		2	2	0,4 0,576	
	1.2	2,4	2.88	0,576	
	1.4	2,976			
	1.6				
	1.8				
	2	6.838			
^					

Svan: y(2) ~ 6,84

Ex)
$$y' = y + x \cdot y$$

6.v: $y(0) = 1$
Stepp. $h = 0.1$
Eulers metod: $y_{n+1} = y_n + h \cdot y_n'$
 $x \mid y \mid y' = y + x \cdot y \mid h \cdot y' = 0.1 \cdot y'$
D.1 $1.1 \mid 1.21 \mid 0.121$
0.2 $1.221 \mid 0.3 \mid 1.37$