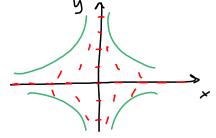
F7.notebook

Rep.) Numerisk lisming med Eulers metod:

$$\frac{\Delta y}{\Delta x} = \frac{y_{1} - y_{0}}{h} \approx y' \qquad Los ut y_{1}$$

$$\frac{y_{1}}{y_{1}} = y_{0} + h \cdot y'$$


$$\frac{y_{n+1}}{y_{n+1}} = y_{n} + h \cdot y_{n}'$$

steget: h = 0.2 $e_{\star})$ $\frac{dy}{dx} = x \cdot y$ Sole: y(2) <u>6.v</u> y(1) = 2 $| h.y' = 0.2 \cdot y'$ y'= ו9 ч X 0,4 b.v xh 2 2,4 4 2.88 0,576 1.2 x^h 1.4 x^h 1.6 2,976 1.8 2 6,838

Exact
$$losning$$
: $y(x) = 2.e^{(x^2-1)/2}$
 $y(z) \approx 8,963$

P. 8.2a) y' + 2xy = 0y' = -2xy

Riktningsfält.

Newtows 2:a lag:
$$\sum F = m \cdot q$$

 $g = m \cdot q$
 $r = mg$
 $\sum F = m \cdot q$
 $-mg = m \cdot a$
 $s''(4) = -g$
 $a = -g$
 $a = v'(t) = s''(t)$
 $s''(4) = -g$
 $\frac{v(t)}{s} = -g dt = -gt + C$
 $\frac{v(t)}{s} = -g dt = -gt + C$

$$\frac{\text{Linjara}}{y'' + f(x) \cdot y' + g(x) \cdot y} = h(x)$$

$$\frac{y'' + f(x) \cdot y' + g(x) \cdot y}{de} = h(x)$$

$$\frac{\text{Linjar}}{de} 2:a \text{ ord}n$$

$$\frac{de}{de}$$

ex)
$$\frac{1}{x} y' = \sqrt{x} y$$
 Linjar?
 $\frac{1}{x} y' - \sqrt{x} y = 0$ Linjar lie ordn. d.p
 $y' \sin(y) = 0$ ej linjar
 $\sqrt{y'} \sin(y) = 0$ ty funktion an den
 $\sqrt{y'}$ produkt =>
ej linjar
ej linjar

F7.notebook

Losming as (1.5) ordn. linjara do
m.h.a "integrerande faktor".
ex)
$$y' = \sin x$$
 Direkt integraring
 $y = \int \sin x \, dx = -\cos x + C$
ex) $(e^x \cdot y)' = \sin x$
 $e^x \cdot y = \int \sin x \, dx = -\cos x + C$
 $y = \frac{-\cos x + C}{e^x}$
UL $(e^x \cdot y)' = e^x \cdot y + e^x \cdot y'$ [produkt regch.
 $(fg) = f'g + fg'$
 $e^x \cdot y' + e^x \cdot y = \sin x$ (2)
 $y' + y = e^x \cdot \sin y$
Vill skrina VL som en derivata av en
produkt med y och integrarande faktor
 $d^x (y \cdot e^{F(x)}) = \operatorname{starx} h(x)$
integrarande faktor, IF,
(=) $y' \cdot e^{F(x)} + y \cdot e^{F(x)} \cdot f'(x) = \operatorname{starx} h(x)$
 $y' + f(x) \cdot y = e^{F(x)} \cdot \operatorname{starx} h(x)$

Lisningsgång - Linger I:= ordn d.e. Viktigt!

$$\begin{bmatrix} 1 \cdot y' + (f(x)) \cdot y = h(x) \\ 1 \cdot y' + (f(x)) \cdot y = h(x) \end{bmatrix}$$
1) 1:= fore y' Annows dele både led.
2) Best. integrerande faktor (1F):
 $e^{F(x)} = e^{\int f(x) dx}$ dör f(x) ar funktionen
vid y med tedsen.
3) Multiplicera med (F, i båda led.
 $e^{F(x)} \cdot y' + e^{F(x)} \cdot f(x) \cdot y = e^{F(x)} \cdot h(x)$
 $= \frac{d}{dx} (y \cdot IF) = \frac{d}{dx} (y \cdot e^{F(x)}) = (y \cdot e^{F(x)})^{t}$
VL kan då alltid skrivas som derivatan
av produktor mellan y och iF.
4) Integrora båda led:
 $y \cdot e^{F(x)} = \int e^{F(x)} \cdot h(x) dx$
 $y = e^{F(x)} \cdot \int e^{F(x)} h(x) dx$

F7.notebook

ex)
$$\begin{cases} x^{2} y' + x \cdot y = 1 \\ y(1) = 2 \end{cases}$$

Linjor I:a ordn.
1) $y' + \frac{1}{x} \cdot y = \frac{1}{x^{2}}$ (*)
2) IF: $e^{\int \frac{1}{x} dx} = e^{\ln x} = x$
3) Mult. med IF i (*) ger:
 $x \cdot y' + y = \frac{1}{x}$
 $\frac{1}{y'x} (y \cdot x) = \frac{1}{x}$
4) integrera béda aidor
 $y \cdot x = \int \frac{1}{x} dx$
 $y \cdot x = \int \frac{1}{x} dx$
 $y \cdot x = \int \frac{1}{x} dx$
 $y \cdot x = \ln |x| + C$
 $y = \frac{\ln |x|}{x} + \frac{C}{x}$
Allman liming.
 $bv: y(1) = 2 = \frac{\ln 1}{1} + \frac{C}{1}$ (=) $C = 2$
 $\int Var: y(x) = \frac{\ln (x)}{x} + \frac{2}{x}$ particular lism.

January 28, 2016

F7.notebook

FN 9.9)
$$(1+x^{2}) \cdot y' - 2x \cdot y = (1+x^{2})^{2} \cdot \arctan x$$

$$\lim_{x \to \infty} \lim_{x \to \infty} \frac{1}{x} \cdot \frac{1}{x}$$

b.v y(o)=1 ger C