F9 2:a oodn. de med konstanta koefficienter.
P. 8.15 b) $\quad y^{\prime}=\frac{1+y}{x^{2}+x}$
separabel

$$
\frac{d y}{d x}=\frac{(1+y)}{\left(x^{2}+x\right)}
$$

$y \neq 1$

$$
\begin{aligned}
\int \frac{d y}{1+y} & =\int \frac{d x}{x^{2}+x}(x)
\end{aligned}=
$$

b.v. $\quad y(1)=-1$

$$
\because-1=c_{1} \cdot \frac{1}{2}-1 \Leftrightarrow c_{1}=0
$$

ger 1 smingen $y(x)=-1$

FN. 9.14)

Retardation: - a prop mot hast.

$$
-a=k \cdot v
$$

dār $a=V^{\prime}$

$$
-v^{\prime}=k \cdot v
$$

$$
\frac{d v}{d t}=-k \cdot v \quad \cdot \text { separera }
$$

$$
\frac{d v}{v}=-k \cdot d t
$$

$$
\int \frac{d v}{v}=\int-k \cdot d t \quad \cdot \text { integrera }
$$

$$
\begin{aligned}
e^{\ln |v|}= & e^{-k t}+c \\
|v| & =e^{-k t} \cdot e^{c}
\end{aligned}
$$

$$
v=C_{1} \cdot e^{-k t}
$$

b.v. $\quad v(0)=v_{0}$

$$
\begin{aligned}
& v=c_{1} \cdot e_{1}^{-0}=v_{0} \quad \Leftrightarrow c_{1}=v_{0} \\
& v(t)=v_{0} \cdot e^{-k t}
\end{aligned}
$$

Sōk $+d_{a}^{c} \quad v(t)=0$ ger $t \rightarrow \infty$
sträcka: $s(t)=\int v(t) d t$
$=\int v_{0} \cdot e^{-k t} d t=\frac{v_{0} \cdot e^{-k t}}{-k}+C$
6.v. 2: $S(0)=0 \quad$ ger $\quad 0=\frac{v_{0} \cdot e^{0}}{-k}+C \quad \Leftrightarrow c=\frac{v_{0}}{k}$
$S(t)=\frac{v_{0}}{k}-\frac{v_{0} \cdot e^{-k t}}{k}=\frac{v_{0}}{k}\left(1-e^{-k t}\right)$

Ex) Temp riduin.
$T(t)=$ vinets $\operatorname{tamp}\left({ }^{\circ} \mathrm{C}\right)$ vid tiden $t($ min $)$.
b.v. $T(0)=10^{\circ}$

$$
\text { bv.1: } T(10)=15^{\circ}
$$

Sók tid dá temp ar 18^{6}.
Tempforändring per tedsenhet àr proportionell mot differensen mellan ongluningens och vinets temp

$$
\frac{d T}{d t}=k \cdot(23-T)
$$

$$
T^{\prime}+k \cdot T=k \cdot 23
$$

- if: $e^{\int k d t}=e^{k t}$
- mult. med IF

$$
\begin{aligned}
\frac{d}{d t}\left(T \cdot e^{k t}\right) & =e^{k t} \cdot k \cdot 23 \\
T \cdot e^{k t} & =\int e^{k t} k \cdot 23 d t= \\
& =\frac{23 k \cdot e^{k t}}{k}+C
\end{aligned}
$$

Allmān lism:

$$
\begin{aligned}
6.01 T(0)=10 & =23+C \cdot e^{0} \Leftrightarrow \quad C=-13 \\
6.02 T(10)=15 & =23-13 \cdot e^{-k \cdot 10} \\
-8 & =-13 \cdot e^{k k 10} \\
\frac{8}{13} & =e^{-10 \cdot k} \\
\ln \frac{8}{13} & =-10 \cdot k \quad \Leftrightarrow \quad k=-\frac{1}{10} \ln \frac{8}{13} \\
\because T(t) & =23-13 \cdot e^{-\left(-\frac{1}{10} \ln \frac{8}{13}\right) t}=23-13 e^{\ln \frac{8}{13} \cdot \frac{t}{10}} \\
& =23-13 \cdot\left(\frac{8}{13}\right)^{\frac{t}{10}}
\end{aligned}
$$

Loses med separabel metod d. integrecande faktor.
lingar d.e

$$
T(t)=\frac{23 \cdot e^{k t}+C}{e^{k t}}=\underline{23+C \cdot e^{-k t}}
$$

$$
\ldots
$$

$$
T(t)=\underbrace{23-13 \cdot\left(\frac{8}{13}\right)^{\frac{t}{10}}}
$$

S8k: t_{2} da $T\left(t_{2}\right)=18=23-13 \cdot\left(\frac{8}{13}\right)^{\frac{t_{2}}{10}}$

$$
\begin{aligned}
-5 & =-13 \cdot\left(\frac{8}{13}\right)^{t_{0} / 10} \\
\frac{5}{13} & =\left(\frac{8}{13}\right)^{t_{2} / 10} \\
\ln \frac{5}{13} & =\ln \left[\left(\frac{8}{13}\right)^{t_{2} / 10}\right] \quad\left[\ln \left(a^{p}\right)=p \cdot \ln a\right. \\
\ln \frac{5}{13} & =\frac{t_{2}}{10} \cdot \ln \frac{8}{13} \\
10 \cdot \frac{\ln \frac{5}{13}}{\ln 8 / 13} & =t_{2} \approx 20 \mathrm{~min}
\end{aligned}
$$

2:a ordn. de med konstanta koe ficienter

$$
\begin{array}{ll}
y^{\prime \prime}(x)+a \cdot y^{\prime}(x)+b \cdot y(x)
\end{array} \sum_{\substack{\text { konstanta } \\
\text { koefficienter }}} \quad h(x)
$$

Homogena d.e av 2:a ordu. med koust. koetf.

$$
\begin{gathered}
y^{\prime \prime}+a y^{\prime}+b y=0 \\
\text { Antag: } y(x)=C \cdot e^{r x} \\
y^{\prime}(x)=C \cdot r \cdot e^{r x} \\
\left.y^{\prime \prime}(x)=C \cdot r^{2} \cdot e^{r x}\right\} \text { im i d.e } \\
e^{r x} \cdot\left(c r^{2}+C r \cdot a+C b\right)=0 \\
\underbrace{e^{r x}}_{\neq 0} \cdot \underbrace{C \cdot}_{\neq 0}(\underbrace{\left.r^{2}+a r+b\right)}_{\text {karakteristisht polynom }}=0
\end{gathered}
$$

Lis karakteristiska ekv: $\quad r^{2}+a r+b=0$

- Om $r_{1} \neq r_{2} \in \mathbb{R}$ (Tva alika reella roller) $\left\{\begin{array}{l}r_{1}^{i} \\ r_{2}\end{array}\right.$

$$
y(x)=C_{1} \cdot e^{r_{1} \cdot x}+C_{2} \cdot e^{r_{2} \cdot x}
$$

- Om $r_{1}=r_{2}=r \in \mathbb{R}$ (Reell dubbelrot):

$$
\begin{aligned}
& O_{1}=r_{2}=r \in \mathbb{R} \\
& y(x)=C_{1} \cdot e^{r x}+C_{2} \cdot x \cdot e^{r x}=\left(C_{1}+C_{2} \cdot x\right) \cdot e^{r x}
\end{aligned}
$$

- Om $r=\alpha \pm i \beta$ (Komplexa rotter, varandras $\begin{gathered}\text { konjugat) }\end{gathered}$
 OBS! inga (i) ned i losuings.

Ex1) $y^{\prime \prime}+y^{\prime}-2 y=0 \quad$ Homigen d.e.
Sät: $y=C \cdot e^{r x}$ ger
karakter. ekv:

$$
\begin{aligned}
& r^{2}+r-2=0 \\
& r=-\frac{1}{2} \pm \sqrt{\frac{1}{4}+\frac{2 \cdot 4}{4}} \\
& r=-\frac{1}{2} \pm \frac{3}{2}<-2
\end{aligned}
$$

$$
\because y(x)=C_{1} \cdot e^{x}+C_{2} \cdot e^{-2 x}
$$

$E \times 2$)

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

Sät: $y_{h}=C \cdot e^{r x}$ ger
kar.ekv: $r^{2}+4 r+4=0$

$$
\begin{aligned}
& r=-2 \pm \sqrt{4-4} \\
& r=r_{2}=-2 \quad \text { dubbel rot. }
\end{aligned}
$$

$$
y(x)=\left(C_{1}+C_{2} \cdot x\right) \cdot e^{-2 x}=C_{1} \cdot e^{-2 x}+C_{2} \cdot x \cdot e^{-2 x}
$$

Ex3) $\quad y^{\prime \prime}+2 y^{\prime}+5 y=0$
Säth: $y_{h}=C \cdot e^{r x}$ ger
kar. ekv: $r^{2}+2 r+5=0$

$$
\begin{aligned}
& r=-1 \pm \sqrt{1-5} \\
& r=-1 \pm \sqrt{-4}
\end{aligned} \quad-1=i^{2}
$$

Re $r=-1 \pm 2 i$
Komplexa 18 sningar.
Suar. $y_{h}=e^{-1 \cdot x} \cdot\left(c_{1} \cdot \cos 2 x+c_{2} \cdot \sin 2 x\right)$

Harleduring:

$$
\begin{aligned}
& r_{1}=-1+2 i \\
& r_{2}=-1-2 i \\
& y_{n}=C_{3} \cdot e^{(-1+2 i) x}+C_{4} \cdot e^{(-1-2 i) x} \\
& e^{i \theta}=\cos \theta+i \cdot \sin \theta \\
& y_{n}=c_{3} \cdot e^{-x} \cdot \underbrace{e^{2 i x}}_{i}+c_{4} \cdot e^{-x} \cdot \underbrace{e^{-2 i x}}= \\
& =e^{-x} \cdot(c_{3} \cdot(\overbrace{\cos 2 x+i \sin 2 x}^{*})+c_{4}(\underbrace{\cos (-2 x)+i \sin (-2 x)}_{\cos 2 x}) \\
& =e^{-x}(\underbrace{\left(c_{3}+c_{4}\right)}_{=c_{1}} \cdot \cos 2 x+\underbrace{i\left(c_{3}-c_{4}\right)}_{=c_{2}} \cdot \sin 2 x)
\end{aligned}
$$

$$
\begin{aligned}
& \text { FN. 9.20d) } y^{\prime \prime}+6 y^{\prime}+25 y=0 \quad \text { Los d.e. } \\
& \text { Sätt: } y_{h}=c \cdot e^{r x} \text { ger } \\
& \text { kar. ekv: } r^{2}+6 r+25=0 \\
& r=-3 \pm \sqrt{9-25} \\
& r=-3 \pm \sqrt{16 i^{2}} \\
& r=-3 \pm 4 i
\end{aligned} \quad \begin{aligned}
& y_{h}=e^{-3 \cdot x}\left(C_{1} \cdot \cos 4 x+C_{2} \cdot \sin 4 x\right)
\end{aligned}
$$

