Liujar algebra:
(F1) Introdulction till velctoralgebra.

- Vektorer har bacde storlek och riktuing

$\overline{F_{1}}$ har samma storlek som \bar{F}_{2} men dika riktning, och ger olika resultat vid forflyttning.
- Vanliga tal (skalärer) har bara storleh (l.ex area $\begin{gathered}2,75 \mathrm{~m}^{2} \\ 105 \mathrm{k}\end{gathered} \quad$ har ingen riktuing)

Ventorer rite ut med pilar.
Beteckaas uned smábokstaver med pil eller velktorstech

$$
\begin{aligned}
& \bar{v}=\vec{v}=v \\
& a \cdot x=a \cdot \bar{x}
\end{aligned}
$$

eller ifet stil
talet a multiplicerad med veltor \bar{x}.

- $\bar{V}=$ vektor frán punkten A till punkten B

$$
\bar{v}=\overrightarrow{A B}
$$

Likhet: vektorer som har
samma riktuing och storlek ar lika, behover inte borja i samma punlt.

Samma rektor \bar{V}
förflyttar blommans alla punkter.

Skalning:
Multiplicera vektorer med tal (skalārer)

$$
\bar{a}=\bar{b}
$$

$$
\begin{aligned}
& \bar{c}=2 \bar{a} \\
& \bar{d}=-0.4 \cdot \bar{a}
\end{aligned}
$$

\star む

Addera vektorer

$$
\begin{aligned}
& \bar{a}+\bar{b} \\
& \text { (resuctantea i fysile) }
\end{aligned}
$$

$$
\bar{a}-\bar{b}=\bar{a}+(-\bar{b})
$$

ex) parallellogram

O, A, B, C punkter.

$$
\begin{aligned}
& \bar{a}=\overrightarrow{O A} \\
& \bar{b}=\overrightarrow{O B}
\end{aligned}
$$

Givet: M är mittpanht $p a^{i}$ diagonalen $\overline{A B}$ visa att $\overline{O M}=\frac{1}{2}(\bar{a}+\bar{b})$.

$$
\begin{aligned}
& \overrightarrow{A M}=\frac{1}{2} \overrightarrow{A B} \\
& =\frac{1}{2}(\overrightarrow{A O}+\overrightarrow{O B}) \\
& (\overline{A B}=\overline{A C}+\overline{C B}+\overline{B A}+ \\
& +\overline{A O}+\overline{O B}) \\
& \begin{array}{l}
=\underbrace{\frac{1}{2}(-\bar{a}+\bar{b})}_{\overrightarrow{O A}+\overrightarrow{A M}}
\end{array} \\
& =\bar{a}+\frac{1}{2}(-\bar{a}+\bar{b})=\bar{a}-\frac{1}{2} \bar{a}+\frac{1}{2} \bar{b} \\
& =\frac{\bar{a}+\bar{b}}{2}=\frac{1}{2}(\bar{a}+\bar{b})
\end{aligned}
$$

$\because M$ àr mitlpunlet $p a^{\circ} \quad \overline{O C} \quad(=\bar{a}+\bar{b})$

Liksidig 6-hörning.
uttryck nedanstáende vektorer med \bar{a} och \bar{b}.

- $\overrightarrow{B A}=\overrightarrow{B O}+\overrightarrow{O A}=-\bar{b}+\bar{a}=\bar{a}-\bar{b}$
- $\overrightarrow{O D}=-\bar{a}$
- $\overrightarrow{E B}=2 \overline{6}$
- $\overrightarrow{O C}=\bar{b}-\bar{a}$
- $\overrightarrow{D B}=\bar{b}+\bar{a}$
- $\overline{B F}=-\bar{b}+\bar{a}-\bar{b} \quad\left(=\frac{-\bar{b}}{\overrightarrow{B O}}+\bar{a}+\frac{\overline{O A}}{\overrightarrow{A F}}+\overrightarrow{A F}\right)=\bar{a}-2 \bar{b}$
- $\overline{C F}=2 \bar{a}-2 \bar{b}$
- $\overline{E C}=2 \bar{b}-\bar{a}$

Koordinat system:

Basvektorer:
$\left\{\bar{e}_{1}, \bar{e}_{2}\right\}$ om
de inte ar parallella.
(dus.ska vara linjart obevoende)

eller

- Längd \}av en vektor \bar{v}, betecknas $|\bar{v}| \stackrel{\diamond}{=}\|\bar{v}\|$
$\left.\begin{array}{l}=\text { Storlek } \\ =\text { Norm }\end{array}\right\} \quad \bar{v}=x \cdot \bar{e}_{x}+y \cdot \bar{e}_{y}=\binom{x}{y}$ har langgden:
Langd: $|\bar{v}|=\sqrt{x^{2}+y^{2}}$
koordinater till vektorn $\overline{O P}$.
ex) $\overrightarrow{O P}=\underbrace{4 \cdot \bar{e}_{x}}_{4}+\underbrace{3 \cdot \bar{e}_{y}}_{9}=\binom{4}{3}$
Lángd:
komposanter, "del vektorer".

$$
\left.|\overline{O P}|=\left\lvert\, \begin{array}{l}
4 \\
3
\end{array}\right.\right) \mid=\sqrt{4^{2}+3^{2}}=5
$$

- Ortsvektorer - vektorer som startar i origo.
- har samma koordinaler som slutpankt:
punkt: $P=(-1,3)$
$\underset{\text { vektor }}{\text { orts }} \overline{O P}=\binom{-1}{3}$

$$
\begin{aligned}
& Q=(5,2,6) \\
& \overrightarrow{O Q}=\left(\begin{array}{l}
5 \\
2 \\
6
\end{array}\right)
\end{aligned}
$$

veletor fran A till $B: \quad[\overrightarrow{A B}=\overrightarrow{A D}+\overrightarrow{O B}$

$$
\begin{aligned}
& =-\overrightarrow{O A}+\overrightarrow{O B} \\
& =\overrightarrow{O B}-\overline{O A}
\end{aligned}=\left\{\begin{array}{l}
\text { oriss } \\
\text { vekt }
\end{array}\right.
$$

$$
\begin{gathered}
A=(4,3) \quad \overrightarrow{A B}={ }^{\prime \prime} B-A^{\prime \prime}=\binom{2}{4}-\binom{4}{3}= \\
=\binom{2-4}{4-3}=\binom{-2}{1} \\
(-2,4)=-2 \cdot \overline{e_{x}}+1 \cdot \overline{e_{y}}
\end{gathered}
$$

En vektors koordinater mellom 2 punkter ferâknas: "slutpunkt - startpunkt.".
ex)

$$
\begin{aligned}
A & =\left(2, \frac{1}{2}, 4\right) \\
B & =(-3,2,-2) \\
{[\overline{A B}} & =" B-A "=\left(\begin{array}{c}
-3 \\
2 \\
-2
\end{array}\right)-\left(\begin{array}{c}
2 \\
0.5 \\
4
\end{array}\right)=\left(\begin{array}{c}
-5 \\
1,5 \\
-6
\end{array}\right) \\
& =\overline{O B}-\overline{O A}]
\end{aligned}
$$

Längd av $\overline{A B}:|\overline{A B}|=\sqrt{(-5)^{2}+(1,5)^{2}+(-6)^{2}}$

$$
\left|\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right|=\sqrt{x^{2}+y^{2}+z^{2}}
$$

Enhetsvektorer har langd 1.

$$
\begin{array}{rlrl}
\overrightarrow{\vec{e}_{x}} & 4 \bar{e}_{y} & \vec{e}_{A B} \\
\text { l.ex } \bar{v}=\binom{\sqrt{3} / 2}{-1 / 2} & \quad|\bar{v}| & =\sqrt{\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(-\frac{1}{2}\right)^{2}} \\
& =\sqrt{\frac{3}{4}+\frac{1}{4}}=\sqrt{\frac{4}{4}}=1
\end{array}
$$

- Normering - bild a en enhetsvehtor i samma riktn.

$$
\bar{v}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \quad|\bar{v}|=\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{14}
$$

Dela veltorn med längden

$$
\begin{aligned}
& \bar{e}_{v}=\frac{1}{\sqrt{14}} \cdot \bar{v} \\
& {\overline{e_{v}}}_{v}=\frac{1}{|\bar{v}|} \cdot \bar{v}=\hat{v}
\end{aligned}
$$

$$
\text { ex) } \bar{u}=\left(\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right) \quad|\bar{u}|=\sqrt{2^{2}+(-1)^{2}+2^{2}}=\sqrt{9}=3
$$

