F13 Variabelbyte (-substitution)
Rep. Partiell integration (P.I) funktioner,
ब̄ven:

$$
\begin{aligned}
& \text { ex) } \underbrace{\int \frac{\ln x}{x} d x}_{I}=\int \underset{\uparrow}{\int_{i n t}^{\text {int }} \frac{1}{x}} \cdot \ln x d x=\underset{I}{\ln x} \cdot \ln x-\underbrace{\int \ln x \cdot \frac{1}{x} d x}_{I} \\
& I=\ln x \cdot \ln x^{+}-I \\
& 2 I=(\ln x)^{2}+C \\
& I=\frac{1}{2}(\ln x)^{2}+C_{1} \quad c_{1}=\frac{C}{2}
\end{aligned}
$$

Sammansatta funbtioner
inre derivota

$$
\begin{aligned}
& \frac{d}{d x}\left(\ln \left(1+x^{2}\right)\right)=\frac{1}{\left(1+x^{2}\right)} \cdot(0+2 x)=\frac{2 x}{1+x^{2}} \\
& \begin{array}{l}
\text { integrera } \\
\text { becal led. }
\end{array} \\
& \ln \left(1+x^{2}\right)+C=\int \frac{2 x}{1+x^{2}} d x \\
& \frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
& y_{\text {derivata }}^{\text {tre }} \text { inrerivata } \\
& \int f(t) d t=F(t)+C= \\
& =F(g(x))+C \\
& \text { sammansath } \\
& \text { funchion } \\
& q \quad \text { sāte : } t=g(x) \\
& \frac{d t}{d x}=g^{\prime}(x) \\
& d t=g^{\prime}(x) d x
\end{aligned}
$$

Svart att se ibland. lisningen ar variabellegte Gor variabelbyte i den sammansatta funletionen.
ex)

$$
\begin{aligned}
& \int \underline{x} \cdot e^{\left(-x^{2}\right)} \underline{d x}=\left\{\begin{array}{l}
\text { variabelbyte: } \\
t=-x^{2} \\
\frac{d t}{d x}=-2 x \\
d t=-2 x \cdot d x \\
\frac{d t}{-2}=\underline{x \cdot d x}
\end{array}\right\} \\
= & \int e^{t} \cdot \frac{d t}{-2}= \\
= & -\frac{1}{2} e^{t}+C
\end{aligned}
$$

$=\left\{\right.$ byt tillbalea efler integreringen $\left.\begin{array}{c}\text { primitiv funtecion }\end{array}\right\}=-\frac{1}{2} e^{-x^{2}}+C$
(forts. frân sid 1)

$$
\begin{aligned}
& \because \int \arctan x=\frac{x \cdot \arctan x-\frac{1}{2} \ln \left|1+x^{2}\right|+C}{\text { ex) } \int \tan x d x=\int \frac{\sin x}{\frac{\cos x}{t}} d x}=-d t \\
& \quad=\int-\frac{1}{t} d t=-\ln |t|+C
\end{aligned}
$$

$$
\{\text { byt tillaka }\}=-\ln |\cos x|+C
$$

$$
\begin{aligned}
& =e^{y} \cdot 2 y-2 \cdot e^{y}+C=\left\{\begin{array}{l}
\text { byt } \\
\text { till } 6 a k a
\end{array}\right\} \\
& =e^{\sqrt{x}} \cdot 2 \sqrt{x}-2 \cdot e^{\sqrt{x}}+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { ex) } \int(\arctan x) d x=\iint_{4}^{1 \cdot \arctan x} d x=\underset{\rightarrow}{x} \operatorname{virctan} x-\underbrace{\int x \cdot \frac{1}{1+x^{2}} d x}_{I_{2}} \\
& I_{2}=\int \underbrace{\frac{x}{1+x^{2}}}_{t} d x / 2 \quad=\left\{\begin{array}{l}
t=1+x^{2} \\
\frac{d t}{d x}=0+2 x \\
\frac{d t}{2}=\frac{2 x d x}{2}
\end{array}\right\} \\
& =\int \frac{d t}{2 \cdot t}=\frac{1}{2} \int \frac{d t}{t}=\frac{1}{2} \ln |t|+C=\left\{\begin{array}{l}
\text { byt } \\
\text { tillbake }
\end{array}\right\} \\
& =\frac{1}{2} \ln \left|1+x^{2}\right|+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex. S, } 17 \\
& \text { S. } 249
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{2} \int t^{-2} d t \stackrel{\text { 匕 }}{=}-\frac{1}{2} \frac{t^{-2+1}}{-2+1}+C=\text { byf tillbaka } \\
& =+\frac{1}{2} t^{-1}+C=\frac{1}{2}\left(4+\cos ^{2} x\right)^{-1}+C=\underline{\frac{1}{2\left(4+\cos ^{2} x\right)}+1}
\end{aligned}
$$

ex)

$$
\left.\begin{array}{l}
\int x \cdot \sqrt{x-4} d x=\left\{\begin{aligned}
& \text { prova byta at hela rotuthrydhel } \\
& t=\sqrt{x-4} \Rightarrow t^{2}=x-4 \\
& x=t^{2}+4 \\
& \cdots
\end{aligned}\right\} \\
\frac{d x}{d t}=2 t \\
d x=2 t d t
\end{array}\right\}
$$

Bestānd integral

$$
\begin{aligned}
& \int_{x=0}^{x=1} \cos (1+\sqrt{x}) d x=\left\{\begin{array}{ll}
t=1+\sqrt{x}
\end{array} \Leftrightarrow \sqrt{x}=t-1 \Rightarrow\right. \\
& x=1 \Rightarrow t=2 \quad x=t^{2}-2 t+1 \\
& \frac{d x}{d t}=2 t-2 \\
& \int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a)
\end{aligned}
$$

$$
\begin{aligned}
& =[\sin t(2 t-2)-2 \cdot(-\cos t)+C]_{t=1}^{t=2} \\
& =\sin 2 \cdot(4-2)+2 \cdot \cos 2+c-(\sin 1(2-2)+2 \cdot \cos 1+C) \\
& =2 \cdot \sin 2+2 \cdot \cos 2+c-2 \cos 1-c
\end{aligned}
$$

$$
\begin{aligned}
& -\int \underbrace{f(g(x)) \cdot g^{\prime}(x) d x}_{t}=\left\{\begin{array}{l}
t=g(x) \\
d t=g^{\prime}(x) \\
\frac{d x}{d x} \\
d t=g^{\prime}(x) d x
\end{array}\right\}= \\
& =\int f(t) \cdot d t=F(t)+C=\{b y t \text { tillbaka\}}=F(g(x))+c \\
& \\
& =\int \frac{u^{\prime}(x)}{u(x)} d x=\left\{\begin{array}{l}
t=u(x) \\
d t=u(x) d x
\end{array}\right\}=\int \frac{1}{t} d t=\ln |t|+C \\
& =\ln |u(x)|+C
\end{aligned}
$$

ex) $\int \frac{1}{2 x+4} d x=\frac{\ln |2 x+4|}{2}+C$
ex) $\int \frac{2 x+7}{\left(x^{2}+7 x\right)} d x=\left\{\begin{array}{l}t=x^{2}+7 x \\ \frac{d t}{d x}=2 x+7\end{array}\right\}=\int \frac{d t}{t}=\ln |+|+<$

