FIb Medelvärdes satsen (till integralkalkylean)
Analysens huvudsats (kap6)
ex)

$$
\int \frac{1}{\sqrt{1+x^{2}}} d x \quad\left\{\begin{array}{l}
\sqrt{x}=\tan (t) \\
\frac{d x}{d t}=1+\tan ^{2}(t)
\end{array}=\frac{1}{\cos ^{2}(t)} .\right.
$$

$$
=\int \frac{1}{\sqrt{1+\tan ^{2} t}} \cdot \frac{1}{\cos ^{2}(t)} d t
$$

$=\int \frac{1}{\sqrt{\frac{1}{\cos ^{2} t}}} \frac{1}{\cos ^{2}(t)} d t=\int|\cos t| \cdot \frac{1}{\cos ^{2}(t)} d t=\left\{\begin{array}{l}\text { Antag } \\ \text { cost }>\delta\end{array}\right\}$
$=\int \frac{\underbrace{1-\sin ^{2}(t)}_{1-u^{2}} d t}{d u}=\left\{\begin{array}{l}\frac{u=\sin t}{d u}=\cos t \\ d u=\cos (t) d t\end{array}\right\}$
$=\int \frac{d u}{1-u^{2}}=\int \frac{d u}{(1-u)(1+u)}$

Partialbrák:

$$
\begin{aligned}
& \text { Partialbrāk: } \\
& \text { vL } \frac{1}{(1-u)(1+u)}=\frac{A}{1-u}+\frac{B}{1+u}=\frac{A(1+u)+B(1-u)}{(1-u)(1+u)}+L
\end{aligned}
$$

Identifiera tälj.

$$
\left.\left.\begin{array}{rl}
\text { Identhfiera talj. } \\
u: & 0=A-B \\
u_{0}^{0} & 1=A+B
\end{array}\right\} \quad\left(\begin{array}{cc|c}
1 & -1 & 0 \\
1 & 1 & 1
\end{array}\right)-\begin{array}{c}
A \\
-1
\end{array}\right)-\left(\begin{array}{cc}
1 & -1 \\
0 & 2 \\
0 & 1
\end{array}\right)
$$

$$

$$

$$
I=f o r t s=\int \frac{1}{(1-u)(1+u)} d u=\int \frac{1 / 2}{1-u}+\frac{1 / 2}{1+u} d u
$$

$$
=\underbrace{\frac{1}{2} \ln |1-u|}_{\text {- byt fillbaka derivata til| }}+\frac{1}{2} \ln |1+u|+C \underset{4}{4}=\frac{1}{2} \ln \left|\frac{1+\sin t}{1-\sin t}\right|+c
$$

dar $x=\tan t$

$$
\frac{x}{1}=\tan (t)
$$

urfig. $\sin (t)=\frac{x}{\sqrt{1+x^{2}}}$

$$
=\frac{1}{2} \ln \left(\frac{\sqrt{1+x^{2}}+x}{\sqrt{1+x^{2}}-x}\right)^{+c}=
$$

$$
\int \frac{x+2}{x^{2}+2 x+2} d x
$$

(námnaren)
Sät $t=x^{2}+2 x+2$

$$
\begin{aligned}
& \text { faktoriseraN } \\
& x^{2}+2 x+2=0 \\
& x=-1 \pm \sqrt{1-2} \\
& \text { Nej }
\end{aligned}
$$

6) kvadratkomp N

$$
\begin{array}{r}
=\int \frac{1}{x^{2}+1} d x=\arctan (x) \\
+c
\end{array}
$$

$$
\begin{aligned}
& \frac{d t}{d x}=2 x+2 \\
& \frac{d t}{d x}=2(x+1) \\
& (x+1)^{2}+1 \\
& \text { Ja! }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} \int \frac{d t}{t}+\int \frac{1}{(x+1)^{2}+1} d x \\
& =\frac{1}{2} \ln |t|+\arctan (x+1)+C \\
& =\frac{1}{2} \ln \left(x^{2}+2 x+2\right)+\arctan (x+1)+C
\end{aligned}
$$

a) f

Kap 6 Bestämda integraler
Integralkalkylens medelvärdessats.

$$
\bar{y}=\frac{y_{1}+y_{2}+\ldots+y_{n}}{n}=\frac{\sum_{i=1}^{n} y_{i}}{n}
$$

Dela in x-intervallet $[a, b]$ i in st delar med bredden Δx

$\bar{f}(c)=\frac{1}{b-a} \cdot \int_{a}^{b} f(x) d x$ for nogot $c, a \leq c \leq b$
\bar{f} är nedelvärdet an funltionen $f(x)$ i $a \leq x \leq b$
ex) $y=f(x)=12-3 x \quad ;-1 \leqslant x \leqslant 4$
Ssk medelvärdet an y intervallet.

$$
\begin{aligned}
\bar{y} & =\frac{1}{b-a} \cdot \int_{a}^{b} f(x) d x \\
& =\frac{1}{4-(-1)} \cdot \int_{-1}^{4}(12-3 x) d x=\frac{1}{5} \cdot\left[12 x-\frac{3 x^{2}}{2}\right]_{-1}^{4}= \\
& =\frac{1}{5}\left[12 \cdot 4-\frac{3 \cdot 4^{2}}{2}-\left(12(-1)-\frac{3 \cdot(-1)^{2}}{2}\right)\right]= \\
& =\frac{1}{5}\left(48-24+12+\frac{3}{2}\right)=\frac{75}{10}=7,5 \\
\bar{f}(c) & =7,5 \\
12-3 x & =7,5 \\
x & =1,5
\end{aligned}
$$

Integralkalkylens huvudsals
Om $A(x)=\int_{a}^{x} f(t) d t$ gäller $A^{\prime}(x)=f(x)$
och därefter:

$$
\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a)
$$

Lät $A(x)=\int_{a}^{x} f(t) d t$
(=Arean under kurvan om $f(x) \geqslant 0$)

$$
A^{\prime}(x)=\left\{\begin{array}{c}
\text { derivatans } \\
\text { definition }
\end{array}\right\}=\lim _{h \rightarrow 0} \frac{A(x+h)-A(x)}{h}
$$

$\left\{\begin{array}{c}A(x+h)-A(x) \text { ãr rōda areaskivan med bredd h } \\ \text { markerad } i \text { fighren: }\end{array}\right\}$ Medelv. sostsen
for inkegraler.

$$
A(x+h)-A(x)=\int_{x}^{x+h} f(t) d t=\bar{f}(c) \cdot(\underbrace{x+h-x}_{=h})
$$

för nágot c dar $c \in[x, x+h]$.
Då $h \rightarrow 0$ gailler att $c \rightarrow x$.

$$
\begin{aligned}
\because A^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{A(x+h)-A(x)}{h}= \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \cdot f(c) \cdot h=\lim _{\substack{h \rightarrow 0 \\
c \rightarrow x}} f(c)=f(x) .
\end{aligned}
$$

(1) $A(x)=\int_{a}^{x} f(t) d t \Rightarrow A^{\prime}(x)=f(x)$
āven:

$$
F^{\prime}(x)=f(x) \quad \text { dar } F(x) \text { primitiv }
$$ fien. till $f(x)$.

Dá $A(x)$ och $F(x)$ har samma derivata gäller:
(2)

$$
A(x)=F(x)+C
$$

lus. $x=a$ i (1) ger

$$
A(a)=\int_{a}^{a} f(t) d t=0
$$

ins i (2) ger $0=F(a)+C \quad \Leftrightarrow$

$$
C=-F(a)
$$

$$
\begin{gathered}
\because A(x)=F(x)-F(a) \\
\because A(x)=\int_{a}^{x} f(t) d t=F(x)-F(a)
\end{gathered}
$$

lus. $\frac{x=b}{b}$ ger
slutligen:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =[F(x)]_{a}^{b}=F(b)-F(a) \\
& =[F(x)+C]_{a}^{b}=(F(b)+d-(F(a)+\not \subset)) \\
& \because \quad \begin{array}{l}
\text { inget } c \text { behōus vid. } \\
\text { bestāmda integraler. }
\end{array}
\end{aligned}
$$

ex) Area av $\frac{1}{4}$ cirkel.

$$
\quad|\cos t| \geqslant 0 \quad \text { for } 0 \leqslant t \leq \frac{\pi}{2}{ }^{\text {icos }} \text { dublalarinkelu" }
$$

Känt:

$$
\begin{aligned}
& \text { Area av cirkel }=\pi R^{2} \\
& \because \quad-1 \quad \frac{1}{4}-1-=\frac{1}{4} \pi R^{2} . \quad J_{a!} .
\end{aligned}
$$

Area an cirkel $=\pi R^{2}$

$$
\begin{aligned}
& x^{2}+y^{2}=R^{2} \\
& \text { cirkelus elew. med radie } R \\
& y= \pm \sqrt{R^{2}-x^{2}} \\
& A=\int_{0}^{R} f(x) d x \\
& =\int_{0}^{R} \sqrt{R^{2}-x^{2}} d x=\left\{\begin{array}{l}
x=R \cdot \sin t \\
x^{2}=R^{2} \cdot \sin ^{2} t \\
d x=R \cdot \cos t d t
\end{array}\right. \\
& \text { grānser: } x=0 \Rightarrow t=0 \\
& \left.\begin{array}{ccc}
\text { gränser: } & x=0 \Rightarrow t=0 \\
x=R \Rightarrow & R=R \cdot \sin t \\
x:[0, R] \rightarrow t\left[0, \frac{\pi}{2}\right] & 1=\sin t \\
t=\frac{\pi}{2}
\end{array}\right\} \\
& =\int_{0}^{\pi / 2} \sqrt{R^{2}-R^{2} \cdot \sin ^{2} t} \cdot R \cdot \cos t d t \\
& \text { mitpunbat }(0,0) \\
& =\int_{0}^{\pi / 2} R \underbrace{\sqrt{1-\sin ^{2} t}}_{|\cos t| \geqslant 0} \cdot R \cdot \cos t d t
\end{aligned}
$$

