F3 Veletorproduct

Rep) Bestäm vinkeln mellan vektorerna

$$
\bar{u}=\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right) \quad \text { och } \quad \bar{v}=\left(\begin{array}{l}
2 \\
4 \\
4
\end{array}\right)
$$

Skalärprodukt: $\bar{u} \cdot \bar{v}=\|\bar{u}\|\|\bar{v}\| \cdot \cos \theta$

$$
\Leftrightarrow \cos \theta=\frac{\bar{u} \cdot \bar{v}}{\|\bar{u} \mid \cdot\| \bar{v} \|}
$$

$$
\begin{aligned}
\|\bar{u}\|=\sqrt{(-1)^{2}+2^{2}+1^{2}}=\sqrt{6} & \cos \theta
\end{aligned}=\frac{\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right) \cdot\left(\begin{array}{l}
2 \\
4 \\
4
\end{array}\right)}{\sqrt{6} \cdot 6}=\frac{-1 \cdot 2+2 \cdot 4+1 \cdot 4}{6 \cdot \sqrt{6}}, ~ \begin{aligned}
\cos \theta=\sqrt{2^{2}+4^{2}+4^{2}}=6 & =\frac{10}{6 \cdot \sqrt{6}}=\frac{5}{3 \sqrt{6}} \\
\theta & =\arccos \left(\frac{5}{3 \sqrt{6}}\right) \approx 47.1^{\circ}
\end{aligned}
$$

Ex) Pyramid byggande
Ramp med $3^{\circ}$ lutning Stenblode 20 ton


- Varie person har dragkraften $730 \mathrm{~N} \quad \bar{F}=\bar{F}_{P}+\bar{F}_{N}$ i rampens ritetning

$$
|\bar{F}| \approx 20000 \cdot 9,8
$$

- Rampens friction ar forsumbar

Likformighet ger: $\quad \frac{\left|\bar{F}_{p}\right|}{|\bar{F}|}=\frac{\text { mot. }}{h_{y p}}=\sin 3^{\circ}$

$$
\left|\bar{F}_{p}\right|=|\bar{F}| \cdot \sin 3^{\circ} \approx 20000 \cdot 9.8 \cdot \sin 3^{\circ} \approx 10258 \mathrm{~N}
$$

Dragkraften máste vana storre an $\left|\overline{F_{p}}\right|$

$$
\begin{aligned}
x \cdot 730[N] & >20000 \cdot 9.8 \cdot \sin 3^{\circ} \quad[N] \\
x & >14.1 \\
x & \geqslant 15 \text { pers. }
\end{aligned}
$$

Svar: Miust 15 pers. kraus.

Veletorprodult (Kryssprochult)
$\bar{a} \times \bar{b} \quad \bar{a}$ en ny veletor som àr vinkelràt mot báde $\bar{a}$ och $\bar{b}$

Finns bara i 3-dim, $\mathbb{R}^{3}$.
$\bar{a} \times \bar{b}$


- $\bar{a}, \bar{b}, \bar{a} \times \bar{b})$ "ar līgerorienterad. storlele ow $\bar{a} \times \bar{b}$ :
- $|\bar{a} \times \bar{b}|=|\bar{a}| \cdot|\bar{b}| \cdot \sin \theta \quad$ (dar $\theta$ är vinkeln mellan $\bar{a}$ och $\bar{b}$.) áven
- $|\bar{a} \times \bar{b}|=$ area ar parallellogram som $\bar{a}$ och $\bar{b}$ spänner UPP
- $\bar{a} \times \bar{b}$ à vinkelràt mot bcide $\bar{a}$ och $\bar{b}$.


Om $\bar{a} \times \bar{b}=0$ ar $\bar{a}$ och $\bar{b}$ parallella.
(ingen vridning, skruvning)
(*) tank hogerhaud: d亠̄ar $\bar{a}$ àr tummen $\bar{b}=$ pelefinger
$\bar{a} \times \bar{b}=$ framvikt làngfinger.


Berákna veletorprodulten:

$$
\bar{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \quad \bar{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

$\bar{a} \times \bar{b}=\{$ Sarrus regel, metod att bl.a bercikna $\bar{a} \times b\}$ $\bar{a} \times \bar{b}=\left\{\begin{array}{lllll}{ }^{+} & & \\ \bar{e}_{x} & \bar{e}_{y} & \bar{e}_{z} & \bar{e}_{x} & \bar{e}_{y} \\ a_{1} & a_{2} & a_{3} & a_{1} & a_{2} \\ b_{1} & b_{2} & b_{3} & b_{1} & b_{2}\end{array}\right.$

$$
=\bar{e}_{x} \cdot a_{2} \cdot b_{3}+\bar{e}_{y} a_{3} b_{1}+\bar{e}_{2} a_{1} b_{2}-b_{1} a_{2} \bar{e}_{z}-\underline{b_{2} a_{3} \bar{e}_{x}}-b_{3} a_{1} \bar{e}_{y}
$$

$$
=\bar{e} x\left(a_{2} b_{3}-b_{2} a_{3}\right)+\bar{e}_{y}\left(a_{3} b_{1}-b_{3} a_{1}\right)+\bar{e}_{2}\left(a_{1} b_{2}-b_{1} a_{2}\right)
$$

$$
=\left[\begin{array}{l}
a_{2} b_{3}-b_{2} a_{3} \\
a_{3} b_{1}-b_{3} a_{1} \\
a_{1} b_{2}-b_{1} a_{2}
\end{array}\right]
$$

Lár dig metoden, inte resultatet.

Ex) $\bar{a}=\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right) \quad \bar{b}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$
Berākna $\bar{a} \times \bar{b}$.

$$
\begin{aligned}
\bar{a} \times \bar{b} & =\left|\begin{array}{cc}
\bar{e}_{x} & \bar{e}_{y} \\
2 & \bar{e}_{z} \\
2 & x_{2} \\
1 & \bar{e}_{x} \\
2
\end{array}\right|, \bar{e}_{y} \\
& 1
\end{aligned}
$$

$\overline{\text { koll }}$ - $\overline{a t} \overline{\bar{a}} \times \bar{b} \perp \bar{a} . \Leftrightarrow$ shala-mprod $=0$

$$
\begin{aligned}
& \left(\begin{array}{c}
5 \\
-3 \\
-1
\end{array}\right) \cdot\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)=5 \cdot 2+(-3) \cdot 3+(-1) \cdot 1=10-9-1=0 \mathrm{Ja} \text {. } \\
& \overline{\bar{b}} \perp \bar{a} \times \bar{b}:\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right) \cdot\left(\begin{array}{c}
5 \\
-3 \\
-1
\end{array}\right)=1 \cdot 5+1 \cdot(-3)+2 \cdot(-1)=5-3-2=0
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{ll}
6 & -1 \\
1 & -4 \\
2 & -3
\end{array}\right)=\left(\begin{array}{c}
5 \\
-3 \\
-1
\end{array}\right)
\end{aligned}
$$

ex) $\bar{u}=\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right) \quad \bar{v}=\left(\begin{array}{l}3 \\ 4 \\ 5\end{array}\right)$

$$
\bar{u} \times \bar{v}=\left(\begin{array}{l}
0 \\
1 \\
2 \\
0 \\
1
\end{array}\right) \times\left(\begin{array}{l}
3 \\
4 \\
5
\end{array}\right)=\left(\begin{array}{c}
1.5-2.4 \\
2.3-0.5 \\
0.4-1.3
\end{array}\right)=\left(\begin{array}{c}
-3 \\
6 \\
-3
\end{array}\right)
$$

$$
\begin{aligned}
& =\left(\begin{array}{c}
5-8 \\
6 \\
-3
\end{array}\right)=\left(\begin{array}{c}
-3 \\
6 \\
-3
\end{array}\right)
\end{aligned}
$$

koll:

$$
\begin{aligned}
& \bar{u} \cdot(\bar{u} \times \bar{v})=0 \\
& \left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right) \cdot\left(\begin{array}{c}
-3 \\
6 \\
-3
\end{array}\right)=0 \cdot(-3)+1 \cdot 6+2 \cdot(-3)=0 \quad J_{a}!
\end{aligned}
$$

Om skalärprod. =0 ä velutorerna uinkelräta

$$
\bar{v} \times \bar{u}=-\bar{u} \times \bar{v}=\left(\begin{array}{c}
3 \\
-6 \\
3
\end{array}\right)
$$

Area av triangel?

$$
\begin{aligned}
& A=(1,1,0) \\
& B=(3,0,2) \\
& C=(0,-1,1)
\end{aligned}
$$


trig.

$$
\begin{array}{ll}
\overrightarrow{A B}=" B-A "=\left(\begin{array}{l}
3 \\
0 \\
2
\end{array}\right)-\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right) \quad \frac{h}{\|\overline{A C}\|}=\sin \theta \\
\overrightarrow{A C}={ }^{\prime \prime} C-A "=\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)-\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right)
\end{array}
$$

$$
\text { Arean }=\frac{b \cdot h}{2}=\frac{\|\overrightarrow{A B}\| \cdot\|\overrightarrow{A C}\| \cdot \sin \theta}{2}=\frac{\|\overrightarrow{A B} \times \overline{A C}\|}{2}
$$

$$
\begin{aligned}
\|\overline{A B} \times \overline{A C}\|=\sqrt{3^{2}+(-4)^{2}+(-5)^{2}}=\sqrt{9+16+25} & =\sqrt{50} \\
& =\sqrt{2 \cdot 25}=5 \cdot \sqrt{2}
\end{aligned}
$$

Solet area an triangeln: $\frac{\sqrt{50}}{2}=\frac{5 \cdot \sqrt{2}}{2}$ a.e.

L. 1.15)
b)

$$
\begin{array}{ll}
\bar{v}=\left(\begin{array}{c}
3 \\
-3 \\
2
\end{array}\right) \quad & \|\bar{v}\|=\sqrt{22} \\
\bar{e}_{v}=\frac{1}{\sqrt{22}}\left(\begin{array}{c}
3 \\
-3 \\
2
\end{array}\right)=\left(\begin{array}{c}
3 / \sqrt{22} \\
-3 / \sqrt{22} \\
2 / \sqrt{22}
\end{array}\right)
\end{array}
$$

$$
\text { även }-\left(\begin{array}{c}
3 / \sqrt{22} \\
-3 / \sqrt{22} \\
2 / \sqrt{22}
\end{array}\right)
$$

$$
\left|\bar{e}_{v}\right|=\sqrt{\left(\frac{3}{\sqrt{22}}\right)^{2}+\left(\frac{-3}{\sqrt{22}}\right)^{2}+\left(\frac{2}{\sqrt{22}}\right)^{2}}=\sqrt{\frac{9}{22}+\frac{9}{22}+\frac{4}{22}}=\sqrt{\frac{22}{22}}=1
$$

b)
d)


Projelctionen av $\bar{u}$ pá $v$ :

$$
\begin{aligned}
\bar{u}_{v} & =\frac{\bar{u} \cdot \bar{v}}{\bar{v} \cdot \bar{v}} \bar{v}=\left(\frac{\bar{u} \cdot \bar{v}}{|\bar{v}| \cdot|\bar{v}|}\right) \bar{v} \\
& =\frac{\frac{1}{2}}{|\bar{v}|^{2}} \cdot \bar{v}=\frac{\frac{1}{2}}{1 \cdot 1} \bar{v}=\frac{1}{2} \bar{v}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (. } 1.4 \text { ) c) } \\
& \|3 \bar{u}+4 \bar{v}\|=d \\
& \|\bar{u}\|=\|\bar{v}\|=1 \text {, med vinkeln } T / 3 \text {. } \\
& \bar{a} \cdot \bar{a}=|\bar{a}| \cdot|\bar{a}| \cdot \cos 0 \\
& \bar{a} \cdot \bar{a}=|\bar{a}|^{2} \\
& d^{2}=\|3 \bar{u}+4 \bar{v}\|^{2}=(3 \bar{u}+4 \bar{v}) \cdot(3 \bar{u}+4 \bar{v}) \\
& \bar{u} \cdot \bar{v}=|\bar{u}| \cdot|\bar{v}| \cdot \cos \frac{\pi}{3} \\
& =1 \cdot 1 \cdot \frac{1}{2} \\
& =3 \bar{u} \cdot 3 \bar{u}+3 \bar{u} \cdot 4 \bar{v}+4 \bar{v} \cdot 3 \bar{u}+4 \bar{v} \cdot 4 \bar{v} \\
& =9 \cdot \tilde{\sim}_{1}^{|\bar{u}|^{2}}+24 \underbrace{\bar{u} \cdot \bar{v}}_{=\frac{1}{2}}+16{\left.\underset{1}{v}\right|^{2}}_{\sim}^{u} \\
& =9+12+16-37=d^{2} \\
& \because d=\sqrt{37} \text {. }
\end{aligned}
$$

