F5 Avstand
Rep.) Bestäm elew. for planet " genom
punkterna: $P_{0}=(-1,2,1)$

$$
R=(0,6,3)
$$

$$
\begin{array}{ll}
\overrightarrow{P_{B} R}=\left(\begin{array}{l}
0 \\
6 \\
3
\end{array}\right)-\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
4 \\
2
\end{array}\right) & \begin{array}{l}
\text { vectorer } \\
\text { parallelc }
\end{array} \\
\overrightarrow{P_{0} Q}=\left(\begin{array}{l}
1 \\
1 \\
4
\end{array}\right)-\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right) & \begin{array}{c}
\text { med } \\
\text { planet. }
\end{array}
\end{array}
$$

$$
Q=(1,1,4)
$$

a) paramelerform: $\quad \pi: \begin{cases}x=-1+t \cdot 1+s \cdot 2 & \\ y=t \cdot s+s \cdot(1) & t \cdot s \in \mathbb{R} \\ z=1+t \cdot 2+s \cdot 3 & \text { paramutrar }\end{cases}$
b) parameler fri form:

Planets ekvation $p a ̈$ parameterform:

$$
\begin{aligned}
& \bar{n}=\underset{1}{\left(\begin{array}{l}
1 \\
4 \\
2
\end{array}\right)} \underset{1}{\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right)} \underset{2}{\left(\begin{array}{c}
4 \cdot 3-2 \cdot(-1) \\
2 \cdot 2-1 \cdot 3 \\
1 \cdot(-1)-4 \cdot 2
\end{array}\right)}=\left(\begin{array}{c}
14 \\
1 \\
-9
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 14 x+y-9 z+D=0 \\
& A x+B y+C z+D=0 \quad \operatorname{der} \bar{n}=\left(\begin{array}{c}
A \\
B \\
C
\end{array}\right) \\
& \text { lus. t.ex } Q=(1,1,4) \mathrm{ger} \\
& \text { Planets clev. } \\
& 14.1+1-9.4+D=0 \quad \Leftrightarrow \quad D=21 \quad \because 14 x+y-9 z+21=0 \quad \operatorname{SUAR}
\end{aligned}
$$

Avstand:
punkt-plan
P given punld.

- Hitta punkt i planet Po
- Bilda PDP
- projicera $\overline{P B P}$ pá \bar{n}
$d=\left|\frac{\overrightarrow{P_{0} P} \cdot \bar{n}}{|\bar{n}|}\right| \quad \overline{a r} \quad$ solet avstand.

ex) $P=(1,0,0)$
plan: $\pi: \quad x+y-z=0$
Bestàm kortaste austandet mellian puublenen och planel.

$$
\overline{\bar{n}}=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)
$$

$$
|\bar{n}|=\sqrt{1^{2}+1^{2}+(-1)^{2}}=\sqrt{3}
$$

Punct i planet: t.ex $P_{0}=(0,0,0)$

- $\overline{P_{0} P}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$

$$
\left.\begin{aligned}
& \text { - proj av } \overline{P_{0} P} p_{0}^{0} \bar{n}: \\
& d=|\underbrace{\left(\overline{P_{0} P} \cdot \frac{\bar{n}}{|\bar{n}|}\right)}| \begin{array}{l}
\bar{n} /{ }_{4}
\end{array}|\quad| \begin{array}{l}
1 \\
0 \\
0
\end{array}) \cdot\left(\begin{array}{l}
1 \\
1 \\
-1
\end{array}\right) \\
& \sqrt{3}
\end{aligned} \right\rvert\,
$$

(\pm) storlele $\underbrace{}_{\underset{\text { ger behous inte }}{\text { ger riktuing }}}$ av proj
(behous inte har)

$$
=\left|\frac{1 \cdot 1+0.1+0 \cdot(-1)}{\sqrt{3}}\right|=\frac{1}{\sqrt{3}}
$$

Alt: punkt - plan
ex) $\quad P=(1,0,0)$

$$
\begin{array}{ll}
P=(1,0,0) \\
\pi: x+y-z=0 & \bar{n}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
\end{array}
$$

- Bilda linjen genom P vinkelratt mot planet.

$$
L:\left\{\begin{array}{l}
x=1+t \cdot 1 \\
y=0+t \cdot 1 \\
z=0+t \cdot(-1)
\end{array}\right.
$$

L har \bar{n} som riketu. vektor
där $\bar{n}=$ planets normalveltor

- Skärningspunht mellan linjen och planet ger Q
- Sokt aust. $d=|\overline{P Q}|=|t \cdot \bar{n}|$
lus. L i planet: $(1+t)+(0+t)-(0+t(-1))=0$

$$
\begin{aligned}
1+t+t+t & =0 & & d^{0} a t=-1 / 3 \\
3 t & =-1 & & \text { skarl linjen } \\
& t=-1 / 3 . & & \text { planet. }
\end{aligned}
$$

Solet avst $d=|t \cdot \bar{n}|=\left|-\frac{1}{3} \cdot \sqrt{3}\right|=\frac{\sqrt{3}}{3}=\frac{\sqrt{3}}{\sqrt{3} \cdot \sqrt{3}}=\frac{1}{\sqrt{3}}$
eller: Ins. $t=-1 / 3$ i L ger $Q:\left\{\begin{array}{l}x=1-1 / 3 \\ y=-1 / 3 \\ z=-(-1 / 3\end{array}=\left(1-\frac{1}{3},-\frac{1}{3}, \frac{1}{3}\right)\right.$

$$
\begin{aligned}
&=\binom{\frac{2}{3},-\frac{1}{3},}{3} . \\
& \overline{P Q}=\left(\begin{array}{c}
2 / 3 \\
-1 / 3 \\
1 / 3
\end{array}\right)-\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
-1 / 3 \\
-1 / 3 \\
1 / 3
\end{array}\right)=\frac{1}{3} \cdot\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right) \\
& d=|\overline{P Q}|=\frac{1}{3} \sqrt{(-1)^{2}+(-1)^{2}+1^{2}}=\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}} \\
&=\sqrt{\left(-\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{2}}=\sqrt{\frac{1}{9}+\frac{1}{9}+\frac{1}{9}}=\sqrt{\frac{3}{9}}=\sqrt{\frac{1}{3}}=\frac{1}{\sqrt{3}} .
\end{aligned}
$$

Arst. Pankt - Linje

- Válj en punket pá L: Po
- $\overline{P_{0} P},\left|\overrightarrow{P_{0} P}\right|$
- proj ar $\overline{P_{0} P}$ pá l ger $\overline{P_{0} Q} \quad|\overline{B a Q}|$
- Pythagoras sats ger d :

$$
\begin{aligned}
d^{2}+\left|\overline{P_{0} Q}\right|^{2} & =\left|\overline{P_{0} P}\right|^{2} \\
d & =\sqrt{\left|\overline{P_{0} P}\right|^{2}-\left|\overline{P_{0} Q}\right|^{2}}
\end{aligned}
$$

Ex) tenta jan-13. (5p)
Avständet mellem $P=(-1,0,3)$ och $L:\left\{\begin{array}{l}x=3+2 t \\ y=t \\ z=-1-t\end{array}\right.$

- $P_{0}=(3,0,-1) \in L$
- $\overline{P_{0} P}=\left(\begin{array}{c}-1 \\ 0 \\ 3\end{array}\right)-\left(\begin{array}{c}3 \\ 0 \\ -1\end{array}\right)=\left(\begin{array}{c}-4 \\ 0 \\ 4\end{array}\right)=4 \cdot\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$

$$
\left|\overline{P_{0} P}\right|=\sqrt{(-4)^{2}+0^{2}+4^{2}}=4 \cdot \sqrt{2}
$$

- proj ar $\overline{P_{B} P}$ pá L ger $\overline{P Q}$.

$$
\begin{array}{r}
|\overline{P Q Q}|=|\underbrace{\left.\frac{\overline{P_{0} P} \cdot \bar{V}}{|\bar{v}|} \right\rvert\,}_{\begin{array}{c}
\text { storleb av } \\
\text { proj' pá linjen }
\end{array}}=\left|\frac{\left(\begin{array}{c}
-4 \\
0 \\
4
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right)}{\sqrt{2^{2}+1^{2}+(-1)^{2}}}\right|=\left|\frac{-4 \cdot 2+0 \cdot 1+4 \cdot(-1)}{\sqrt{6}}\right|=\frac{12}{\sqrt{6}} \\
=\frac{2 \cdot 6}{\sqrt{6}}=2 \cdot \sqrt{6}
\end{array}
$$

- Pythagoras ger d:

$$
\begin{aligned}
d^{2}+\left(\frac{12}{\sqrt{6}}\right)^{2} & =(4 \cdot \sqrt{2})^{2} \\
d^{2}+\frac{12 \cdot 12^{2}}{6} & =16 \cdot 2 \\
d & =\sqrt{32-24}=\sqrt{8} \quad \text { Sokt aust. }
\end{aligned}
$$

L:1.23 Origo: $0=(0,0,0) \in$ planel.

$$
\left\{\begin{array}{l}
x=2+t \\
y=2+2 t \quad \in \text { pland. } \\
\bar{z}=3+3 t \\
P_{0}=(2,2,3) \in L \in \Pi \\
\bar{v}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \text { parallell med } \\
\text { planel. }
\end{array}\right.
$$

$\overline{U P}_{6}=\left(\begin{array}{l}2 \\ 2 \\ 3\end{array}\right)$ parallell mad II

$$
\bar{n}=\overline{o P_{0}} \times \bar{v}=\left(\begin{array}{cc:c:c}
\bar{e} \times & \bar{e}_{0} & \bar{e} & \overline{e x} \\
2 & \overline{e y} \\
1 & 2 & 2 & 2 \\
2.2-1.2
\end{array}\right)=\left(\begin{array}{cc}
2.3 & -2.3 \\
3.1 & -3.2 \\
2
\end{array}\right)=\left(\begin{array}{c}
0 \\
-3 \\
2
\end{array}\right.
$$

$$
0 \cdot x-3 \cdot y+2 z+D=0
$$

ins en punlet ; planet ger D. $0-30+20+0=0$ $D=0$
$\because \quad-3 y+2 z=0 \quad$ planets elvation
(innehäller x-axelu)

Avst. Linje - Plan
L och π är parallella (annars blir aust. 0)

- Välj en punct pá linjen och bestàm kortarte avst. med metoden punkt - plan Aust. Plan - Plan

Planen mäste vara parallella,
 annors ár aust. 0.

- Välj valfri puulct ; plan Π_{1} och beotàm avstànd till plan T_{2} som ovan

Avst. Linje-Linje

- $\bar{n}=\bar{v}_{1} \times \bar{v}_{2}$
är vinkelrèt mot bada Rinjerruas
 riktningsseutorer \bar{v}_{1} resp. \bar{v}_{2}.

Soke aust $d=|t \cdot \bar{n}|$

- Välj en punkt fràn vardera linje, tiex P_{1} och P_{2}
- Bilda ${\bar{P} P_{2}}^{0}$ och projicera pá \bar{n} $d=\left|\frac{\overline{P_{1} P_{2}} \cdot \bar{h}}{\mid \bar{h} 1}\right| \quad \bar{a} r$ solt austand.

$$
\bar{P}_{1} P_{2}=\left(\begin{array}{c}
5 \\
5 \\
3
\end{array}\right)
$$

- proj av $\bar{P}_{1} P_{2}$ pá \bar{n} ger d.

$$
d=\left|\overrightarrow{P_{1} P_{2}} \cdot \frac{\bar{n}}{\left|n_{1}\right|}\right|=\left|\frac{\left(\begin{array}{c}
5 \\
5 \\
3
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right)}{\sqrt{2^{2}+(-1)^{2}+3^{2}}}\right|=\left|\frac{10-5+9}{\sqrt{14}}\right|=\sqrt{14}
$$

$$
\begin{aligned}
& \text { Ex) } L_{1}:\left\{\begin{array}{l}
x=-1-2 t_{1} \\
y=-3-t_{1} \\
z=t
\end{array}\right. \\
& L_{2}:\left\{\begin{array}{l}
x=4+t_{2} \\
y=2+5 t_{2} \\
z=3+t_{2}
\end{array}\right. \\
& \bar{V}_{2}=\left(\begin{array}{l}
1 \\
5 \\
1
\end{array}\right) \\
& \bar{n}=\bar{v}_{1} \times \bar{v}_{2}=\left(\begin{array}{ccc}
\bar{e}_{x} & \bar{e}_{y} \bar{e}_{z} \not \bar{e}_{x}, \bar{e}_{y} \\
-2, & \bar{e}_{1} & 1,-2,-1 \\
1,5 & 5
\end{array}=\left(\begin{array}{c}
-1.1-5 \cdot 1 \\
1.1-1 \cdot(-2) \\
-2.5-1 \cdot(-1)
\end{array}\right)=\right. \\
& \begin{array}{l}
=-\bar{e}_{x}+\bar{e}_{y}-10 \bar{e}_{z}-(-1) e_{\bar{z}}-5 \bar{e}_{x}-(-2) \bar{e}_{y}=\left(\begin{array}{c}
-6 \\
3 \\
-9
\end{array}\right)=-3 \cdot\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right. \\
P_{P_{1}}=(-1,-3,0) \in L_{1} \quad \underbrace{}_{2}=(4,2,3) \in L_{2} \quad \underbrace{2} \begin{array}{c}
2 \\
-1 \\
3
\end{array}) \\
\bar{P}_{1} P_{2}=\left(\begin{array}{c}
5 \\
5 \\
3
\end{array}\right)
\end{array} \\
& \begin{array}{l}
=-\bar{e}_{x}+\bar{e}_{y}-10 \bar{e}_{z}-(-1) \overline{e \bar{z}}-5 \bar{e}_{x}-(-2) \bar{e}_{y}=\left(\begin{array}{c}
-6 \\
3 \\
-9
\end{array}\right)=-3 \cdot\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right. \\
P_{1}=(-1,-3,0) \in L_{1} \\
\bar{P}_{1} P_{2}=\binom{5}{5}
\end{array} \\
& \begin{array}{l}
=-\bar{e}_{x}+\bar{e}_{y}-10 \bar{e}_{z}-(-1) \overline{e \bar{z}}-5 \bar{e}_{x}-(-2) \bar{e}_{y}=\left(\begin{array}{c}
-6 \\
3 \\
-9
\end{array}\right)=-3 \cdot\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right. \\
P_{1}=(-1,-3,0) \in L_{1} \\
\bar{P}_{1} P_{2}=\binom{5}{5}
\end{array} \\
& \begin{array}{l}
=-\bar{e}_{x}+\bar{e}_{y}-10 \bar{e}_{z}-(-1) \overline{e \bar{z}}-5 \bar{e}_{x}-(-2) \bar{e}_{y}=\left(\begin{array}{c}
-6 \\
3 \\
-9
\end{array}\right)=-3 \cdot\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right. \\
P_{1}=(-1,-3,0) \in L_{1} \\
\bar{P}_{1} P_{2}=\binom{5}{5}
\end{array} \\
& \bar{v}_{1}=\left(\begin{array}{c}
-2 \\
-1 \\
1
\end{array}\right)
\end{aligned}
$$

