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Let us briefly discuss the fundamentals of the method of approximating Hamiltonians as applied
to the analysis of the models with four-fermion interaction. Among the extensive variety of
these models, we choose. first of all, the models of general form for which one can find an
exact solution. The models describing the systems of interacting fermions with four-fermion
pairwise -interaction represent an important example of this type of models. Asymptotically
exact solutions of such models were analyzed in [1] by N.N. Bogolyubov, D.N. Zubarev, and
YVu.A. Tserkovnikov. In this work, they proposed an approximate method based on the use of
“approximating (trial) Hamiltonians,” and presented many arguments supporting the assumption
that the solution obtained by this method is asymptotically exact in the ordinary thermodynamic
limit as V — oo. Specifically, in [1], 2 model was considered with the Hamiltonian

H=Hp+ Hint, Hp = Z(E(p) i l‘)a;‘p.sapsv
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where a; 1172 and a, 41/ are the Fermi operators and V is the volume of the system. It is assumed
that the kernel J(p,p') is a real bounded function vanishing outside a certain domain of variation of




its arguments. The summation in Hins Over quasimomenta p and p’ is performed within the energy
layer Ep —w < E(p) < Ep + w.

As is known, for this type of Hamiltonians, one can obtain an approximate expression for the free
energy, which becomes asymptotically exact in the limit as V' — co. This idea can be realized by
introducing the so-called trial Hamiltonian Hy(C), which represents a quadratic form with respect
to the Fermi operators and contains an arbitrary complex parameters C'. This Hamiltonian can be
easily diagonalized, and the corresponding free energy can be calculated explicitly.

In {1], the authors suggested that the approximate free energy Fy(C) is equal to the exact
free energy F in the limit as V' — oo. Originally, this result was obtained by the methods of
perturbation theory. The assumption that the free energies are identical was supported by the
fact that each term of the series in perturbation theory constructed for calculating the corrections
to the given approximate solution is asymptotically small in the limit as V — co. However, the
question of the convergence of the series in perturbation theory was not analyzed in detail. In [2],
the same problem was analyzed without using the methods of perturbation theory. The following
BCS-type model was investigated:
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where f = (p,0), —f = (—p,0), o is the spin quantum number taking the values 1/2 or —1/2.
and p is the quasimomentum taking ordinary quasi-discrete values Py = 2“2‘”, where, for a

fixed L (L® = V), the, number n(g) runs over the sequence of integers. Ty = 2; — i, where p is

the chemical potential, and a; and a} are operators satisfying ordinary anticommutation relations
of the Fermi-Dirac statistics. The functions J(f, f') and W(f) are real functions possessing the
properties

JG Y= H==d=1F), W(=f)=-W(f).-"

For example,

I ) =5 P o0 — o) ~d(c+d)},  Jpp) =@ ,p) = J(-p.P),
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where d(o — o) is the Kronecker delta. The auxiliary term v/ in (1.2) is introduced to select the
physically meaningful solutions. In [2], a chain of equations for the Green functions was investigated.
It was shown that the Green function for an exactly solvable model with the Hamiltonian H;
satisfies a similar chain of equations obtained for the exact Hamiltonian H with an error of the
order of 1/V. However. from a rigorous mathematical point of view, these arguments could
not be regarded as exhaustively convincing. Nevertheless, the works [1, 2] made a signiﬁcan‘t
contribution to the analysis of asymptotically exact solutions. At the same time, we should note
that the rigorous proof of asymptotic exactness of the results obtained in [1, 2] has faced substantial
mathematical difficulties. The problem of the existence of the asymptotically exact solution as a
purely mathematical problem was first investigated by N.N. Bogolyubov for a particular case of zero
temperature. He investigated a model described by the Hamiltonian (1.2) under the assumption
that the kernel J(f, f') can be factorized, i.e.,

() = M) - Mf)-




{n addition. it was assumed that the functions A(f) and 7'( f) satisfy the following conditions:
AM=f)==Xf), T(-f)=T(f),
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for sufficiently small positive z. It is this model that was studied in detail in the zero-temperature
case. It was shown that the model is exactly solvable in the limit as V' — oo in the sense that the
asymptotic values for the energy of ground state, for the Green functions, and for the correlation
functions characterizing the dynamic behavior of the system can be exactly calculated in this limit.
The calculation of the quantities listed above in the case of arbitrary temperature § # 0 is also of
considerable interest. However, the direct application of the approach of [3] proved to be impossible
in this case.

Thus. initially, this approach was applicable only to the study of the properties of the ground
state of a system. Some of the subsequent works, in particular [4, 5], were devoted to the
complicated problem of extending the method to the case of model Hamiltonians of the type (1.2)
at zero temperature. '

Now. consider the model Fermi systems of the form
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We use the conventional notations f = (p,s) and —f = (—p,—s) for the set of four quantum
numbers. the momentum p and the spin projection o, which determine the state of a free fermion:

27N, 2mn, 2mn,
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V = LS’ Pr —

Ng, Ny, T, are integers,

and Ty = :,';—;‘ — p, where u is a chemical potential. For the standard Bardeen model, we assume
that

2

Je(s) = const, i%n- —-pl <0,
Alfy= . I g{s) = £1. - (1.5)
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In this work, we do not literally rely on these siringent constraints imposed on the functions 77
and A(f). For our purposes, it is sufficient to impose the following weaker conditions:

The functions A(f) and Ty are real and A(—f) = —A(f),
1
5;—, ZIA” < k; = const, VZle - Af] < ko = const,
{f) ) (1.6)
%(Zn:)@ <ks=const if V — oo

These conditions are certainly fulfilled in the case (1.5). Note also that, in this case, the free energy
per unit volume of a relevant system consisting of noninteracting fermions is finite el e
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Performing identity transformations, we can rewrite (1.4) as
H=H+H,
where the “approximating Hamiltonian” H 0 is given by

H = ZT;a}a; - {Z(Ca_faf + C"a}a..f)} +2ve*C,
(6] 6))
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and C and C* are c-numbers. Since H? is quadratic with respect to Fermi operators, it can be
diagonalized by the u—v-transformation

ay = u(f)ay —v(f)ak;

thus, the free energy per unit volume, defined by
0 0
fu,(C) = - lnSpe‘ET,

can be readily calculated. The complex parameter C entering the trial Hamiltonian H 0 js deter-
mined from the condition for the absolute minimum of the free energy per unit volume feo(C):

fro(C) = min,

which yields the equation

where

T= 5N alal,  ®

We develop a method that allows us to prove that the difference fyo — fu of the free energies
calculated on the basis of approximating and model Hamiltonians is asymptotically small. For this
purpose, it is convenient to consider an auxiliary model system with the Hamiltonian containing
the sources whose intensity is characterized by the parameter v:

T=T-2vJ-Ji - (W +*T)V. (1.8)
When v = 0, Hamiltonian (1.8) coincides with H, where

i — Z Tfa}af.
(5)

The appropriate trial (approximating) Hamiltonian is given by

L

=T-2v(CJ'+C'J)-V(vJ + wIn - WIcE. (1.9)



Hence. it is obvious that
I'=r'+Uu,

where

U =—2V(J -C)J' - C). (1.10)

Now, let us calculate the above difference between the free energies per unit volume. To this
end, we note that I' = I'® 4+ I and introduce an intermediate auxiliary Hamiltonian

=T,

which coincides with the trial Hamiltonian I'? if ¢ = 0 and with the original Hamiltonian I if £ = 1.
We assume that the parameter C in the intermediate Hamiltonian is fixed and independent of t.
Consider the statistical sum and the free energy for the intermediate Hamiltonian:
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0 ¢
f(C)=-7IQ,  Q=SpeTT, Q=eTV. (L11)

Note that fi=1(C) = fr and, hence, is independent of C. Differentiating (1.11) twice with respect
to ¢, we obtain |
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On the other hand, taking into account that
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Taking into account that
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we also obtain
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where B = U — (U). Passing to the matrix representation in which the Hamiltonian is diagonal, we
obtain

3 _(Eh - z-:n) En :
o (n,m) )
¢ _(EL-E) Et
to (nm)
2

This, in particular, implies that

af:
-y —(Ll),

decreases as the parameter ¢ increases. Thus, we have

;4 1
fPO(C)—.fI‘=——/%It5dt=—-/%zdt20.
0 0

Since this relation holds for arbitrary C, we have
%i?fpo(C’) 2fr,  Jre 2 fr.

Integrating both sides of this inequality, we obtain
’ W) > @, 0<t<1
Substituting (1.10) instead of ¢, we can see that the following inequality holds for any C:
fro(C) — fr < 2((J - C)(J" - C*))r.
In particular, we set C' = (J)r and note that
fro = min fro(C) < fro({J)r).

Thus,
fro = fr £ fro((D)r) = fr < (I = (D)p)(IT = (IT1))r,

and, finally,
0 < fro — fr < 2((J = (IN(IT = (IN)). (1.12)

Let us return to our main problem. Our goal is to prove that the difference fro— fr is asymptotically
small in the limit as V' — oo. It follows from (1.12) that, to prove this, we must first prove that
the thermodynamic average on the right-hand side of (1.12) is asymptotically small. Let us outline
a general method for estimating this average. First, we note that

[ITJ — JI'| < K = const,

where K = |v|ks + kg + 2k, k3. Taking into account that the energy I of the system is proportional
to V, we can naturally assume that the operators I" and J, JT asymptotically commute in the limit

el
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as V' — oo. Thus, if we neglected the noncommutativity of the operator I" with the operators J, J'
for any finite V, then, differentiating the free energy with respect to v and v*, we would obtain

Pf _,Sp(J-Jle %) V(spJe-%)(sp Jte%)

-l 2 s = 5 ¥yt
vbv* Spe—7% (Spe-b)2 V(T = (INIT = (ah)),
or, which is equivalent,
6 &%f
Ve = (= U= (). (113)

Our problem will be solved if we prove that the second-order derivatives % are bounded.
However, we cannot prove this assertion. All we can do is to proceed from the obvious boundedness
of the first derivatives:

of
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5 Z [Afl = k1 = const.
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As we noted above, the operators J and Jt actually do not commute, and, hence, equation (1.13)
must be corrected.

The asymptotic smallness of the difference between the two aforementioned free energies per
unit volume can be proved in two stages. First, we should construct an estimate for the aver-
age (1.13) expressed in terms of the second-order derivative ;,%25% of free energy with regard to
the noncommutativity of the operators I' and J,J*. Then, proceeding strictly from this estimate
and neglecting the hypothesis that the second-order derivatives of the free energy are bounded, we
propose a method by -which we prove the asymptotic smallness of the difference Sfro — fr in the
limit as V' — oo.

Differentiating the appropriate expression for the free energy, we have

1 ®f v /lsp(De—%FDfe-“-%ﬂF)dr
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where D = J — (J). Passing to the matrix representation in which the Hamiltonian T is diagonal.
we obtain

(1-7)
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Thus, we see that
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Let us apply the Holder inequality.* In our case, it is convenient to write this inequality as

2 |'“k|2 il 2 2 S
Lmisiy > Juxl*pi (1.16)
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E; E.
usl® = |Dumf? - [~ F — e F|VQ.

Substitutiné the two last expressions for px and Iuklz into (1.16), we obtain

_‘Qi Z !Dnm|2 ® le_fin. — e—’%n'l
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Applying the simple transformation

% S |Duml? - |Bn — Bl (¢~ % + ¢~ %)
(n"m)

= g—Sp e=3 {(rD — pr)(D'T —TDY) + (DT — DD - DI‘)}
= V{(TJ - JT)(J - JT)! + (T - SO - JF)> < 2VK?,

we can prove that

v 2 _Ey —En 62f i 2x1/3
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2The Hélder inequality is
i/q

[Set] < () ™ (01) ™

where p >0, ¢ >0, and 1/p+1/g = 1. Hence,p>1and ¢ > 1. We choose p = 3/2 and g = 3.
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> e ¥ = %SpD .Dte™% = V(D - DY)

= V{(J — (D) = (I1)).
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As a result, we arrive at the inequality

(J =N =(TN)) < -

21 0 EYS( &#f \ 117
Svov*V Vv2/3 Avdv* ) KAy

Thus, we can see that our problem would have been solved if we could show that the second-order
derivatives were bounded in the limit as V — oo. Unfortunately, we do not have a direct proof of
this assertion; that is why we have to rely solely on the boundedness of the first-order derivatives.
Therefore, we should develop a method that is not based on the boundedness of the second-order
derivatives and by which we would be able to prove that the difference

fro = fr

between free energies per unit volume is asymptotically small. Note that f(v,v*) depends only
on the absolute value r = |v| and is independent of the phase factor of the parameter v, so that
f(v,v*) = f(v/vv*) = f(r). Differentiating f with respect to v and v*, we obtain

o A Y _iﬁ(af
av 2V v f(r), vdv* 4r('f"+f'r) T 4ror TE) s0.

Since [['J — JT'| < K = const, we can rewrite inequality (1.17) as

0 ( w1 'l L™ B0
D(r) < 37 (— i 'r'fr) i (‘ y o ;fr> R
where we introduced the following notation:
D(r) = {(J = (MW" = (JN)-

Let us integrate (1.17) with respect to r and show that

ry
/'rD('r)dr-—)O as V — o0
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In fact, we have

1 0 Ty
9 8f KW . f spnf @ ( af) A
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o of|" KT
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T1 70

where
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Let us apply the Holder inequality expressed in the form

/l“vld" < (/ I“ladr)l/a (/‘ |vls/2dr)2/3

in order to transform the right-hand side of the last inequality. Noting that

of
IE < 2k,

we obtain
: 7 4

6
/TD(T) dr < S oy kl(‘ro + M)+ =5

To

2v2/3

this implies that the latter integral asymptotically decreases as V — cc.
Let us return to inequality (1.12):

0 < fro — fr < 2(J — (NI = (IN)).

Denoting a = fro — fr and using (1.19), we obtain

T 2.2 1/3
g < Ol ) (2k1 K (ro + 1)) (5572)
/ra(r) r = % + Vs :

To

2/3 -3 ) .
(2k1K(1’0 + Tl)) _T ’

(1.18)

(1.19)

Recall that the first derivatives % are bounded (see (1.18)) and that |a.(r)| < 4k;. Let us set

ro =7+ [ and r; = r + 2] and make use of the following equality:

r+421 r+21
a(§) / rdr = / ra(r)dr,
4l ! -

where r + | < £ < r + 2l. By the obvious identity

£
a(r) = a(e) - [ atar,

we can show that

Sl ra(r) dr Wk;  (4k1 K)2/3
4ky21 < 8k, .
i sir+20)% — (r+1)7 el baliic g o

We now choose [, which is an arbitrary positive quantity, such that

(KPP - K2/5

Sl = 1= g

Substituting this expression for / into the above inequality, we finally obtain

gy 0 (%)"
8(k1K L
V2l Vs < Vs L = const.

0<fro—fr<

(1.20)
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Here, L is a simple combination of the original constants. Since the difference fro — fr tends to
zero as V — oo, we can pass to the limit as r = |[¢| — 0 in inequality (1.20). In this case,

L
Dﬁfrﬂ“frﬁvg/—s, L = const.

It is clear that this estimate is uniform with respect to § > 0 and, hence, is valid for § = 0.

In conclusion, we note that, within the framework of the method of approximating Hamiltonians,
it is also possible to calculate asymptotically exactly the correlation functions and the Green
functions for this model. In particular,-we can show that

(OB ~ (A@BEIrl <7 (5:8) =1+ (8) D

o

where A, B = af,a},a_f,af_f and
1 ik ;
77(?,6 — 0, 7\ 3 -0 as Voo

for any fixed § > 0. We emphasize that these inequalities hold for r > §. The average (A(t)B (7))o
can be readily calculated. and we see that

tig { fim (A()B(r))ro | = Jim (A()B(r))sn-

In [4, 5], we considered a wider class of model systems in which certain special conditions were
imposed on the operators. As an example, consider a model system with negative interaction

described by the Hamiltonian
H=T-2V Y galall, (1.22)
(1<a<s)

where all the parameters g, are positive. If we choose the operators T’ and J, in the form

}
d= E—‘;ZAaa}af_P = Za}af, (1.23)
() (f
we arrive at the conventional Hamiltonian of the BCS model {6, 7]. In fact, as we will see below.
it is not necessary to define the operators 7" and J, strictly in the form (1.23).
Theorem 1. Suppose that the operators T and J, in the Hamiltonian (1.22) satisfy the
conditions ,
el <My, T=T1,
M X M. (1.24)
Ty = JoTI < M,  |Jadp—Jgdal £ Ti |JiJs — JgJi] < -V—3
Mji, Ms, and M; are constants in the limit as V — oo, where 1 < a < sand 1< B <s. Let, in
addition, the free energy per unit volume calculaied for the Hamiltonian T be bounded by a certain
constant:
£(T)| < Mo. (1.25)
Then, if we construct a trial Hamiltonian in the form

H(C)=T -2V ga(CaJl + C*Ja — CaC3), (1.26)

(@) - A e
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where C1,...,C, are compler numbers, the following inequalitres hold:
1
0 < mi Hy(C)-f(H)LE| = ;
< min f(Ho(C)) - f(H) <€ () (1.27)

and S(%) — 0 as V — oo uniformly with respect to 8 on any interval 0 < 8 < 6y, where 0 is an
arbitrary fized temperature.? _

This theorem has found numerous applications. For example, using this theorem, Hertel and
Thirring calculated the free energy in the thermodynamic limit for the model describing a system

of attracting fermions [8].
We also should note that the existence of the limit of the free energy calculated for the

Hamiltonian (1.22), . :
lim f(H), (1.28)
V—aeoo

does not follow from the aforementioned inequalities.
Now, consider the case when the operators T and J,, in (1.22) are given by (1.23). Then, the
hypotheses of the theorem are fulfilled if

ST a(p,0)l < Qo = const,
(p) (1.29)

Aa(p. o)l < Q = const, a=12..,8 o=%1/2

Next, we formulate a theorem that allows us to analyze in greater detail the properties of the
free energies corresponding to the Hamiltonians (1.22) and (1.26) and prove the existence of the
limit (1.28).

Theorem 2. Let the operators T and J, in the Hamiltonian (1.22) be given by (1.23) and
the functions T(f) and \(p,o) satisfy conditions (1.29). Suppose that the functions A(p, o) are
continuous in the space E ezcept, possibly, a set of zero measure. Then,

Ifv{H(C)} — fod H(C)} < ov

for |Cal < 2M;y, @ = 1,2....,s, and this inequality is uniform with respect to 6 on any interval
of the form 0 <8 < 6y. The function fo{H(C)} is defined as usually and has continuous partial

3We denote the free energy per unit volume for an arbitrary Hamiltonian H by f (H) or, if we want to stress the
fact that it depends on the volume V', by fv (H). By min(c) f(C), we always mean the absolute minimum of the
function f(C) in the space of complex parameters C.
Inequalities (1.24) also imply that

Y Pem SQ1 5 D Palo) Q2
() (p)

where Q1 and Q- are certain constants. We can correlate the choice of these constants with the corresponding

constants in inequality (1.24):
M, =Qq, M = 2Qo, M = Qa.

Obviously, conditions (1.24) are fulfilled if
A
lAn(p7U)’ S (p2 + B)31

where A and B are certain positive constants.
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derivatives of arbitrary order with respect to the complex variables C1,...,Cs,Cy,...,C;. Moreover.
it can be shown the following.

1. These functions attain the absolute minimum in the space of complex numbers (C) at certain
points C = C; i.e.,

2. The inequality
|fv(H) — fo{H(C)} < bv, (1.30)

where

- 1
) a_e(v)mv—m,

holds uniformly with respect to 8 on any interval 0 < 8 < 6.

This theorem was proved for the first time in [4].
For a specific choice of operators in the form (1.23), the approximating Hamiltonian mentioned
in Theorem 2 is expressed as

Ho(C) = X T(abas — 5 3 {A*(Pasay + Alf)ahal ;} +2V S gaCaCi, (1.31)
(f) (N (a)

where A*(f) = 23 (a) CaAa(f). Introducing new Fermi operators oy and a} such that

af='ufozf—vfa*_f,
IR I O 4 bdml oy Y = /17 2
u=fivgh  w=-gi-gh  Br= VT +AGP,

we rewrite (1.31) as

1
Ho(C) =Y Egatas+V {2ZgaC;Ca i > (Ef - T,)} .
() (@) T

The free energy per unit volume corresponding to this Hamiltonian can be represented as

fo =25 0.CaCh - 5o DB ~T(1) + 5 in(1+ ). (1.32)
(o) (f) (H

As follows from Theorem 2, fy is approximated by the limit free energy”

i § E(f)
foolHo(C)} =2 90C3Ca — 57— | {E(f) —T(f) —20In(1 + -EM 1 31 (1.33)
{Ho(C)} Tk 2(21r)3f{ s e )}

in the limit as V' — co. Here, the integration [ ...df implies the operation }_, [ ...dp.

4 An alternative approach in which, in order to avoid the passage to the limit as V — oo, the volume V is assumed

to be infinite from the very beginning was developed in [9] sl N L
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2. A GENERAL MODEL

Now, consider a general model of four-fermion interaction [10],

1
H= 3 f\flajap+5 3 Ulffafsfile}ahagap

(ff, (flyf?).fé;f{)
5oy Dl + LS5 (f' o t)asag, (2.1)
. (£./’) 2 L

where U(f1, f2; f5, f1) are symmetric functions with respect to the permutation of arguments

(1e2): {fief fiefH .

and Q(f', f) = Qo(f’, f)+37(f', f,t). This model includes, as a particular case, the model considered
above. In (2.1), we introduced the auxiliary sources

o Z 1= f f t)afaf'y 2 Z .7+(f f)t)afaf’ and Z ](f fv a'faf’
(f:f' (5"} (.5

which are chosen so that the conservation law of the total momentum is fulfilled and, at the same
time, the conservation law of the number of particles is violated.

For model (2.1), we introduce a certain approximating Hamiltonian, which is constructed by
analogy with the approximating Hamiltonian in the simplified model considered above. This
construction is based on the following approximation:

e i i i i i i
apazapap — (aflaf{)afgafé - (ahafé)ahaﬁ -+ (afgafé)aflaf;
— (a},ap)a}ap + (af e} )apag + (agag)al,al,. (2:2)

Define the function

W(f1, f2; f2, f1) = U(f1, f2i fa, 1) — U1, f2i 1, £a)s

which is antisymmetric in the sense that

W(f1, foi f2. i) = -W(fa, fii . i), Wfus fas fo, fi) = =W (f1, fai f1, f2)-

Then, the approximating Hamiltonian for model (2.1) is expressed as

H;\pp == Z ]\-(fla f)a}af' Z K—(f f)afafl s o Z K-r(f f)afaf’ (23)

(575 (4 (f,f’) (f,f')
K(f' ) =i(f [+, )+ Y. W £ fl, f2)(ah ap),
(f1.f2)
Eilf P =3ur, f,t)+ Y. W(f1, fa £, f')a},al,)
(fhfz)
= j+(f', f,t)+— Y. Ulfu. fa £, f')a} al)
(fl.fz)

{7/



E((agag; Ag))E

= S (W 1. R ahano((erag Ag) s + W(H, £ £ f2)apagdol(a),an; Ag))s
f1.02: 1)

+U(f, f'; fr. f2)as,ap)o((ahag Ag)) e + U(f, f's f1, f2)(ak ag)o((as,az,; 4p))E
+W(f1, g, f2)ahep)ol(asar; Ag)) e + W(f1,0: f', f2)asapdol(al as; As))E
+U(g, f'; fu F2) 055 — (abag)o)((anasi ApNE — Ul f'5 fu, f2)(agag)o((ahar; Ag))e )

+ I35 + Z Q(f', H)llaprag; Ag)) e + Y Q(f',9){{asap; Ag)) e, (2.10b)
() (5)
E((alal; ds))s = — 3 {Q0(f, F)(a}als Aa))s + Qolg, £)(ahal; Ag)s |
()
- 3 {W(h, £ 5. f)ahap)o((ahal; Aghs + W £ f2)(ahabol(al ez 4p))E

(f1.f2.f")
+ Uy foi ', D)loap — (abap)ol((ah alo; Ag)) e — U(f1, fai £y F2){al, el ol(ahas; Ag)) e
+ W(f fs 9. F2)abalYo((ah, s AN E + W (f1, 59, f2) (e}, ap)o((abal; Ap))

+ U, fos £ 9)ah aldol(abaps Ag) e + U1, fs £, ) afapdo((al al; A} + g

(2.10c;
Here, Ag = As(g2, 91) according to definitions (2.6); hence,
ok =] . . (g —g2)
Il,l = —1(0;205,)0——2—7}—— e z(a}agl)gT,
e B =) d(g — g2)
I3y = z(aglag.)OT + "'(a}ag)o—“’z";—:
Lok s SE<gn) g0 500l el
Iy = i(ag,agzho e “(afayz)OTv
. af -
La= —1(agzay)'(—'2—;@» I2 =0,

§ e 1
i3 = —‘é;!ﬁ(g = o (a;agg)()]‘s(f sy g(a}agg)oé(g - 91),

i - < g
Iiz= .,—7;(0}%1)00(9 - 92),

(o}, a)0d(f — 92) + 5=10(f ~ 1) — (@haplolélg —g),  Tos=0.

The Hartree—Fock-Bogolyubov equations without sources do not allow one to calculate correctly
the so-called zero or anomalous averages

I3 =

(alagdo,  (afafdo,  (asagho-
Hence, it is necessary to give a different interpretation to the very procedure of calculation of such

averages. For example, we can use the approximating Hamiltonian in the form (2.3) with n = 0:

] 1 1
ngp = Z K(O)(f,f )a}af:a}af: = 5 (Z Kg))(f, f')a}a}, - o § z K_(f)(f',f)afaf: + const,
(£,.5") L) (f.f')

B



where

KO£ =%, )+ Y Wi fi f) flahap)o,

(£.f2)
L) = Ulh, fa £, £) (@l al o,
(f.f2)
KO, ) =3 U, fs fr, ) agan)o.
(f)f'-’)

As a result, the approximate self-consistency equations for calculating the anomalous averages are
rewritten as

Sp{ age ﬁHaPP} "
a s
Spe ﬁHapp ( fag)ﬂ
Sp {a}a}e‘ﬁng} s
SP e—ﬁngp e <afag>~o"
Sp { afag e“ﬁ‘qgw} _
HO = (asag)o.
Sp e #Ham

However, one can also apply an alternative approach based on the Green functions technique.
First, consider the case n # 0 and write out the dynamic equations for the following retarded and
advanced Green functions constructed on the basis of the Fermi operators:®

Gu(f, £ . 7) = ({ab(t)ap (1)) = 0(t — T)(ak(B)ap (7) + apr(7)ak ()
Galfot; f.7) = ({ar(Bap (7)) = O(t — )(a}(t)as(7) + ag(r)as (1))

We obtain the following system of equations for these Green functions:

a " " 4 A
BtG(” = (Z GuK(f,9)+> G(z)R(f,g)) +0(t — )05,
(9) (9)

0
l-—-G(n = —ZG(O)K(!Lf) +ZG(1)K—(9 1)

% (9) {9)

Here, the function K depends on ¢ in the general case, and, therefore, it is relevant to denote it
by K (g, f,t). Now, let us analyze the case when the sources are equal to zero, i.e., n = 0. Then.
G(a) depends only on the difference of the variables ¢ — 7, which is a consequence of the time
uniformity:

G f 6 7)) = Gl '3 — 7).

51t is equally admissible to consider the causal Green functions
G(f.t:f.7) = (T{a}(B)ap (1)}) = 6(t — T)(a}(t)ap (7)) = O(r = t){ap (T)a}(®))

instead of the advanced and retarded Green functions.




e~ o

Hence, it is convenient to employ the energy E-representation of the Green functions considered,

+00 :
1 .
(ajar)e = 5= [ Guy(s, 0 at,

1 +c0
(arar))e = 5= [ Go(s, 00 at,
—00
and appropriately transform the dynamic equations,
Bl{ajar)e + 3 {KO(f,9)(a}ar)e + K (f,0)((agap))e} = —J(f ),
(g)

_ ’ i
Elasar))e+ X {K(f,9)ag0rNe + KO (f,9)(afap e} = o(7 - £).
(9)
Consider, as an example, the BCS Hamiltonian. We use the following spectral E-representation for
the correlation functions and the Green functions, consisting of pairs of Fermi operators ay, f,,

and aJf

(AWB() = [ Jap@)eFeau,
+00
(B)AW) = [ Japw)e ™ aw,

(AB) = / Jap(w)e? dw,

(4aB5)) = / Tas(e)

. . . - ______’———-—”
The BCS Hamiltonian is given by

H = ZT(p)a,faf = e Z J(f f)afa. fa f:afr

£ Vi
where
ol 2mn(1) 27n(2) 27n() P2
haat dalit p_( e s MEPAC Rk et S B

1, 0’
J(f) = e(or — 02)J(p), &(o) = {fl Z Z 0.

It is assumed that J(p) is a symmetric function, so that J(—f) = —J (f).
The conservation laws of momentum and spin projection lead to the following rules of selection

for the averages:
(afag) = 8(f — f'){a}ay),

(alal) = 4(s + f'Yajal ),
(arap) = 8(f + f')(a—say)

and similar rules of selection for the Green functions {({atas))g and ((a far))E.




i

In the case of the BCS model, we have, in particular,
Ui, fas o £1) = =TI + 13U + ),
Wh fai F5o ) = = J ()T + ) + 1)

and
KO£, 1) =Tm)(f — )+ Y W(f1. f; £ fu)lal ag Yo
(f1)
N . ! 2 S f !
=T - £)+8( = 1) (-G OPaLja_h) = 07 - )76,
KO(f'.5) = 8(f + f) (é . J(ﬁ)(aka*—f,)o) J(f) = =8(f + £1CI(f),
: (f1)
KO(f'. £) = S U, fs—fu fi)a-pap,)
(f1}
=8(f + f') (—% - X J(fl)(a—hafx)) J(f) = =8(f + f)CI(f).
‘\.\\ (f1)

The corresponding system of equations for the BCS model has the form

{E+T(@)}(afap))s — CI(F)(a-rar)s = 5=,
© —CJ(f)(atar)e +{E - T(®)H(a_ras)e = 0;
this implies that .
(}ashs = 5 gr—acs
’ i cJ(f)
(a—rar)E = 5- 73— T20) ~ [OE T

Let

E(p) = \/T%(p) + CPIJ]>.

Hence,

1{ R }
E*—F2(p) 2E() \E—E(p) E+E@) )’

L _ i E-T(p) P }
(esr)E = o 3 Em) {E—E(p) E+E@)’
UL G SN
((a—faf))E T B 2E(p) {E...E(p) E+E(P)} i

After obvious transformations, we obtain the expressions for the spectral densities,

w-T(p) 1
Ja"a. = 2E(p) 1 + ePw {5(“) i E(p)) = 6(“’ + E(p))} A

CJ(f)

Ja_ye; = 2E(p)(1 + ebw) {0(w - E(p)) — (v + E(p))},

G /g.*




avv e

since (a;—1 a},_,) = —(an._,a}.) and

K-(f\ N =i(F 10 +5 3 WU.F fuha)anan)
(f1.£2)

=i (f 80+ 5 T UGS fuf2)anag).
(f1,12)

The equations of motion for Hamiltonian (2.3) can be represented as

dal
il =~ S K, £)al + Kol Pa,
’ () (2.4)
iZL = S K(f', flag + K-(f', ol
(£)

Equations (2.4) allow us to write out the appropriate equations for the correlation functions (a}ag‘;,
{afay), and (a}a;);
d(ajay) |
i ‘—‘;t 2 = - {K(f, f)(alag) + K41, fapag)}
)

+ S {K(f 9)alap) + K-(f 9)(afa}) } .
(")

d(ajtag S {K(f, Hlagpag) + K(f', f)iahag)}
() i
: (2.3)
+3 {K(f’;g)(a,a,.) L XA e ~ (a},af)]} ;
()
d(ata) _
—-—<ajta — Y {K(F. f)apab) + Ks(f, £)00.pr — (ajas)]}

()

- 3" {K(g. /) akal) + Koi(g, £ )abap)l} -
'y

Heneeforth, we will call equations (2.5) the Hartree-Fock-Bogolyubov system of equations. Denote
a}(t)a!](t) =A1(fvgat)s J(f:gyt) =771(f$g:t):

ah(t)ad(t) = Aa(f,9,t),  G+(f,0.t) = m(f.9:0); (2.6)
af(t)a‘g(t) =A3(.fxgvt))- j—(f)gat) =n3(f’gvt)

and introduce the Green functions in the form

{——————MAU L } = ((4a(f,9,t)Ap(92, 91, 7)))- (2.7)

5"]5 (gli 92, T) 7=0



The retarded and advanced Green functions are defined conventionally [11, 12]:

({(Aa(t)Ap(T)))™ = 0(t — T)(Aa(t)Ap(7) + Ap(T)Aa(t)), (2.8) :

((Aa(t)Ap(T))Y = —0(r — t){Aa(t)Ap(7) + Ap(T)Aa(t)),
+oo0
(Aa®4s)) = [ ((Aahg))zeE¢dE,
and the spéctra.l representation of the two-time correlation functions is given by
(A1) Aa(®) = [ Japlw)e ™™ d,
i (2.9)

+o0
(Aa(t)Ag(r)) = / Jog(w)ePe @) du,

If we define a function

., . o0 B 11
(Aadghe = o= [ Jog 5

—0o0

dw

=)

on the complex plane E. then

((Aadp))E" = ((Aadp))B+i0s
((-40Aﬂ))2}dv = ((AaAﬂ))E—iO-

The variation of the Hartree—Fock-Bogolyubov equation with respect to the sources ng(t) (see (2.6))
followed by the setting of all the sources to zero yield the following system of equations for the
Green functions:

E((aag; Ag))e = —_ Qo(f, f'){(ahag; As))E
(1
— Y AW £ fo)ahap)ol(ahag; Ap) e + W(f1, £'; £ f2)@]agho((a, al,; As)) e
1L
+U(fr, foi ', £)iak al Jol(apag; Ap))e + U(f1, fos £, fanago((al a}_; Aﬁ))E}
+ 3 (alagp; Ag)(f',9)
()
+ Y W0 f)a]an)ol(aar; Ap) s + W (1.0 £, Fa)(@far)ol(e], e i As)) s
(fufa.f") ~
+U(g, s o f2)anaz)ol(abal; Ag)g + Ulg, 5 fr, f2)(abalYo((anans As)s | + Lup,
(2.10a)

’%521’ —



and the appropriate expressions for the averages.

(ahay) _E(p)-T(p) P  E(p)+T(p) e P¥
UHIOZTOB(E) 1+ 6PEG) | 2E(p) 1+ePE@)’

CJ(f) { 0 AR }_ CI(f) 1 BE®)

(a-181) = 3Ep) \ 13 PE@ ~ 1+ePE@ | — 2E(m) =0 2
B
tanhz = 1—+—e_E

In all the expressions above, we introduced the notation

. 1 -

= (X): J(f){a-sas).
4

Thus, we have arrived at the known gap equation:

" 1 BE(p)
C—CV(XI;IJ(f)PQE(p)tanh =~

The equation
1

1 1@, . BE(p)
5 (2«)3/ BG) b 9P

has a unique solution if 3 > By, where the inverse of the critical temperature, fy, is determined
from the equation
1 J(p)|? 8T

@ o HTE) 5

=61 B0 3

It should also be noted that the general expressions (2.10) for the Green functions not only
represent certain formal relations but also allow one to calculate a correction term for the gap
equation derived in the analysis of a correlation function of the form ({aja_ f;a.‘}a)'_ #))E in the
theory of superconductivity based on the BCS model (see [10]).
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