Scalar and vector nonlinear Schrödinger systems with non-zero boundary conditions

Gino Biondini

State University of New York at Buffalo, Department of Mathematics
http://www.math.buffalo.edu/~biondini

in collaboration with:

Mark Ablowitz (Univ. Colorado), Gregor Kovacic (Rensselaer Polytechnic Institute), Barbara Prinari (Univ. Colorado @ Colorado Springs), David Trubatch (Montclair State Univ.), Emily Fagerstrom and Daniel Kraus (SUNY Buffalo)

Twenty years of Journal of Nonlinear Mathematical Physics
Sophus Lie Center, Nordfjordeid, Norway, June 5–14, 2013
Introduction

- **Nonlinear Schrödinger equation:**
 \[iq_t + q_{xx} - 2\nu(|q|^2 - q_0^2)q = 0, \]
 \(\nu = \pm 1 \): focusing/defocusing.

- **Boundary conditions (BCs):**
 \[q(x, t) \rightarrow q_\pm \text{ as } x \rightarrow \pm \infty \]
 (constant w.r.t. time),
 with \(|q_\pm| = q_0 \).

- **\(q_0 = 0 \): zero BCs (ZBCs),**
- **\(q_0 \neq 0 \): non-zero BCs (NZBCs).**
Introduction

- Nonlinear Schrödinger equation:
 \[i q_t + q_{xx} - 2\nu(|q|^2 - q_o^2)q = 0 , \]
 \(\nu = \mp 1: \) focusing/defocusing.

- Boundary conditions (BCs):
 \[q(x, t) \to q_\pm \text{ as } x \to \pm\infty \]
 (constant w.r.t. time),
 with \(|q_\pm| = q_o. \)

- \(q_o = 0: \) zero BCs (ZBCs),
 \(q_o \neq 0: \) non-zero BCs (NZBCs).

- Vector NLS system:
 \[i\mathbf{q}_t + \mathbf{q}_{xx} - 2\nu(|\mathbf{q}|^2 - q_o^2)\mathbf{q} = 0 , \]

- Case \(N = 2: \) Manakov system.

- BCs: \(\mathbf{q}(x, t) \to \mathbf{q}_\pm \text{ as } x \to \pm\infty. \)

- All integrable, solvable by IST...
Introduction

• Nonlinear Schrödinger equation:
\[
 iq_t + q_{xx} - 2\nu(|q|^2 - q_0^2)q = 0,
\]
\(\nu = \mp 1\): focusing/defocusing.

• Boundary conditions (BCs):
\(q(x, t) \to q_{\pm} \text{ as } x \to \pm \infty\)
(constant w.r.t. time),
with \(|q_{\pm}| = q_o\).

• \(q_o = 0\): zero BCs (ZBCs),
\(q_o \neq 0\): non-zero BCs (NZBCs).

• Vector NLS system:
\[
 iq_t + q_{xx} - 2\nu(|q|^2 - q_0^2)q = 0,
\]

• Case \(N = 2\): Manakov system.

• BCs: \(q(x, t) \to q_{\pm} \text{ as } x \to \pm \infty\).

• All integrable, solvable by IST...
But the story is not yet complete.

- Scalar case w/ ZBC:
Zakharov-Shabat, 1972
- Scalar defocusing case w/ NZBC:
Zakharov-Shabat, 1973
(also Faddeev-Takhtajan, 1987)
- Manakov system, ZBC:
Manakov, 1974
\(N > 2\): Ablowitz-Prinari-Trubatch 2004)

- Defocusing Manakov w/ NZBC:
Prinari-Ablowitz-GB, 2006
(also GB-Kraus, in preparation)
- \(N > 2\) defocusing with NZBC:
Prinari-GB-Trubatch, 2011 (partial!)
- Scalar focusing case w/ NZBC:
Ma, 1979; GB-Kovacic, submitted
(also GB-Fagerstrom, in preparation)
- Focusing Manakov with NZBC:
GB-Kraus, in progress
Nonlinear Schrödinger equation:

\[iq_t + q_{xx} - 2\nu(|q|^2 - q_o^2)q = 0, \]

\[\nu = \pm 1: \text{focusing/defocusing.} \]

Boundary conditions (BCs):

\[q(x, t) \to q_\pm \text{ as } x \to \pm \infty \]

(constant w.r.t. time),

with \[|q_\pm| = q_o. \]

\[q_o = 0: \text{zero BCs (ZBCs)}, \]

\[q_o \neq 0: \text{non-zero BCs (NZBCs).} \]

Vector NLS system:

\[iq_t + q_{xx} - 2\nu(|q|^2 - q_o^2)q = 0, \]

Case \[N = 2: \text{Manakov system.} \]

BCs: \[q(x, t) \to q_\pm \text{ as } x \to \pm \infty. \]

All integrable, solvable by IST... But the story is not yet complete.
Outline

0. Introduction

1. IST for focusing NLS with NZBC
 Direct problem
 Inverse problem

2. Soliton solutions of focusing NLS with NZBC

3. The Benjamin-Feir instability revisited

4. Defocusing Manakov system with NZBC

5. Focusing Manakov system with NZBC

6. Conclusions
Outline

0. Introduction

1. IST for focusing NLS with NZBC
 Direct problem
 Inverse problem

2. Soliton solutions of focusing NLS with NZBC

3. The Benjamin-Feir instability revisited

4. Defocusing Manakov system with NZBC

5. Focusing Manakov system with NZBC

6. Conclusions
Lax pair and Riemann surface

- **NLS Lax pair:** \(\phi_x = X \phi \quad & \quad \phi_t = T \phi \),

\[
X = ik\sigma_3 + Q, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad Q(x, t) = \begin{pmatrix} 0 & q \\ \nu q^* & 0 \end{pmatrix},
\]

\[
T = -2ik^2\sigma_3 + i\sigma_3(Q_x - Q^2 - q_o^2) - 2kQ.
\]

We formulate the IST so as to allow the reduction \(q_o \to 0 \).
Lax pair and Riemann surface

- NLS Lax pair: \(\phi_x = X \phi \quad \& \quad \phi_t = T \phi \),
 \[X = i k \sigma_3 + Q, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad Q(x, t) = \begin{pmatrix} 0 & q \\ \nu q^* & 0 \end{pmatrix}, \]
 \[T = -2 i k^2 \sigma_3 + i \sigma_3 (Q_x - Q^2 - q_o^2) - 2kQ. \]
We formulate the IST so as to allow the reduction \(q_o \to 0 \).

- Asymptotic scattering problem: \(\phi_x = X_\pm \phi, \quad X_\pm = i k \sigma_3 + Q_\pm \).

- The eigenvalues of \(X_\pm \) are \(\pm i \lambda \), with \(\lambda^2 = q_o^2 + k^2 \).
Lax pair and Riemann surface

- **NLS Lax pair:** \(\phi_x = X \phi \) & \(\phi_t = T \phi \),

\[
X = ik\sigma_3 + Q, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad Q(x, t) = \begin{pmatrix} 0 & q \\ \nu q^* & 0 \end{pmatrix},
\]

\[
T = -2ik^2\sigma_3 + i\sigma_3(Q_x - Q^2 - q_o^2) - 2kQ.
\]

We formulate the IST so as to allow the reduction \(q_o \to 0 \).

- **Asymptotic scattering problem:** \(\phi_x = X_\pm \phi, \; X_\pm = ik\sigma_3 + Q_\pm \).

- The eigenvalues of \(X_\pm \) are \(\pm i\lambda \), with \(\lambda^2 = q_o^2 + k^2 \).

- **Branch points:** values of \(k \) s.t. \(\lambda(k) = q_o^2 + k^2 = 0 \), i.e., \(k = \pm iq_o \).

Branch cut: \(i[-q_o, q_o] \).

- **Introduce the two-sheeted Riemann surface** \(\mathbb{C}_I \cup \mathbb{C}_{II} \) defined by \(\lambda(k) \).

- **Uniformization variable:** \(z = k + \lambda \).

\[
k \in \mathbb{C}_I \Leftrightarrow |z| > q_o, \; k \in \mathbb{C}_{II} \Leftrightarrow |z| < q_o.
\]

- express all \(k \) dependence as \(z \) dependence:

\[
k = \frac{1}{2} (z - q_o^2/z), \; \lambda = \frac{1}{2} (z + q_o^2/z).
\]
Jost solutions, analyticity and scattering matrix

- Eigenvector matrices: \(Y_{\pm} = I + (i/z)\sigma_3Q_{\pm}. \) s.t. \(X_{\pm}Y_{\pm} = Y_{\pm}i\lambda\sigma_3. \)
- Continuous spectrum: \(k \) s.t. \(\lambda \in \mathbb{R}: \)
 \[
 k \in \mathbb{R} \cup i[-q_0, q_0] \iff z \in \Sigma = \mathbb{R} \cup C_o \quad (C_o = \text{circle of radius } q_o)
 \]
Jost solutions, analyticity and scattering matrix

- Eigenvector matrices: $Y_{\pm} = I + (i/z)\sigma_3 Q_{\pm}$. s.t. $X_{\pm} Y_{\pm} = Y_{\pm} i\lambda\sigma_3$.

- Continuous spectrum: k s.t. $\lambda \in \mathbb{R}$:

 $k \in \mathbb{R} \cup i[-q_o, q_o] \iff z \in \Sigma = \mathbb{R} \cup C_o$ (C_o = circle of radius q_o)

- Asymptotic time evolution: $\dot{\phi} = T_\pm \phi$, $T_\pm = -2kX_\pm \Rightarrow X_\pm$ & T_\pm admit common eigenvectors (as they should).

- Jost solutions ϕ_{\pm}: simultaneous solutions of both parts of Lax pair s.t.

 $\phi_{\pm}(x, t, z) = Y_{\pm} e^{i\theta \sigma_3} + o(1)$ as $x \to \pm \infty$,

 $\theta(x, t, z) = \lambda (x - 2kt)$. (Formally: Volterra integral equations.)

 This way scattering matrix and norming constants are independent of time.
Jost solutions, analyticity and scattering matrix

- Eigenvector matrices: \(Y_{\pm} = I + \left(\frac{i}{z} \right) \sigma_3 Q_{\pm} \) s.t. \(X_{\pm} Y_{\pm} = Y_{\pm} i\lambda \sigma_3 \).

- Continuous spectrum: \(k \) s.t. \(\lambda \in \mathbb{R} \):
 \(k \in \mathbb{R} \cup i[-q_0, q_0] \iff z \in \Sigma = \mathbb{R} \cup C_o \) (\(C_o = \) circle of radius \(q_o \))

- Asymptotic time evolution: \(\phi_t = T_{\pm} \phi \),
 \(T_{\pm} = -2kX_{\pm} \Rightarrow X_{\pm} & T_{\pm} \) admit common eigenvectors (as they should).

- Jost solutions \(\phi_{\pm} \): simultaneous solutions of both parts of Lax pair s.t.
 \[\phi_{\pm}(x, t, z) = Y_{\pm} e^{i\theta} \sigma_3 + o(1) \quad \text{as} \quad x \to \pm \infty, \]
 \(\theta(x, t, z) = \lambda (x - 2kt). \) (Formally: Volterra integral equations.)
 This way scattering matrix and norming constants are independent of time.

- Scattering matrix:
 \(\phi_+ = \phi_- S(z) \quad \forall z \in \Sigma, \)
 \(b/c \ det \phi_{\pm} = det \mu_{\pm} = det Y_{\pm} = 1 + q_o^2 / z^2 \neq 0 \quad \forall z \neq 0, \pm iq_o \)
Jost solutions, analyticity and scattering matrix

- Eigenvector matrices: \(Y_{\pm} = I + (i/z)\sigma_3 Q_{\pm} \) s.t. \(X_{\pm} Y_{\pm} = Y_{\pm} i\lambda\sigma_3 \).

- Continuous spectrum: \(k \) s.t. \(\lambda \in \mathbb{R} \):
 \[k \in \mathbb{R} \cup i[-q_o, q_o] \iff z \in \Sigma = \mathbb{R} \cup C_o \quad (C_o = \text{circle of radius } q_o) \]

- Asymptotic time evolution: \(\phi_t = T_{\pm}\phi \),
 \(T_{\pm} = -2kX_{\pm} \Rightarrow X_{\pm} \) & \(T_{\pm} \) admit common eigenvectors (as they should).

- Jost solutions \(\phi_{\pm} \): simultaneous solutions of both parts of Lax pair s.t.
 \[
 \phi_{\pm}(x, t, z) = Y_{\pm} e^{i\theta \sigma_3} + o(1) \quad \text{as } x \to \pm\infty, \\
 \theta(x, t, z) = \lambda (x - 2kt).
 \]
 (Formally: Volterra integral equations.)
 This way scattering matrix and norming constants are independent of time.

- Scattering matrix:
 \[
 \phi_+ = \phi_- S(z) \quad \forall z \in \Sigma,
 \]
 \(b/c \) \(\det \phi_{\pm} = \det \mu_{\pm} = \det Y_{\pm} = 1 + q_o^2/z^2 \neq 0 \quad \forall z \neq 0, \pm i q_o \)

- Remove oscillations: \(\mu(x, t, z) = \phi e^{-i\theta \sigma_3} \) (s.t. \(\mu_{\pm} \to I \) as \(x \to \pm\infty \))

- \(\text{Im } \lambda > 0 \) in \(\mathbb{C}^+ \) (gray), \(\text{Im } \lambda < 0 \) in \(\mathbb{C}^- \) (yellow)

- Analyticity: \(\mu_{-,1}, \mu_{+,2} \& s_{2,2} : \mathbb{C}^- \), \(\mu_{+,1}, \mu_{-,2} \& s_{1,1} : \mathbb{C}^+ \).
Symmetries and discrete spectrum

- The scattering problem admits two independent symmetries:
 (unlike focusing NLS with ZBC, and like defocusing NLS with NZBC)

\[z \mapsto z^* \text{ (UHP/LHP)} \iff (k, \lambda) \mapsto (k^*, \lambda^*) \text{ (same sheet)}, \]
\[z \mapsto -q_0^2/z \text{ (outside/inside } C_0), \iff (k, \lambda) \mapsto (k, -\lambda) \text{ (opposite sheets)}, \]

- Symmetries of Jost solutions:
 \[\phi_\pm(x, t, z) = \sigma_2 \phi_\pm(x, t, z^*) \sigma_2, \quad \phi_\pm(x, t, z) = (i/z) \phi_\pm(x, t, -q_0^2/z) \sigma_3 Q_\pm. \]

- Symmetries of scattering coeffs:
 \[s_{2,2}(z) = s_{1,1}^*(z^*), \quad s_{1,2}(z) = -s_{2,1}^*(z^*). \]
 \[s_{1,1}(z) = (q_+/q_-) s_{2,2}(-q_0^2/z), \quad s_{1,2}(z) = (q_+/q_-) s_{2,1}(-q_0^2/z). \]
Symmetries and discrete spectrum

- The scattering problem admits two independent symmetries:
 (unlike focusing NLS with ZBC, and like defocusing NLS with NZBC)

\[z \mapsto z^* \quad \text{(UHP/LHP)} \quad \Leftrightarrow \quad (k, \lambda) \mapsto (k^*, \lambda^*) \quad \text{(same sheet)}, \]
\[z \mapsto -q_o^2/z \quad \text{(outside/inside } C_0), \quad \Leftrightarrow \quad (k, \lambda) \mapsto (k, -\lambda) \quad \text{(opposite sheets)}, \]

- Symmetries of Jost solutions:
 \[\phi_\pm(x, t, z) = \sigma_2 \phi^*_\pm(x, t, z^*) \sigma_2, \quad \phi_\pm(x, t, z) = (i/z) \phi_\pm(x, t, -q_o^2/z) \sigma_3 Q_\pm. \]

- Symmetries of scattering coeffs
 \[s_{2,2}(z) = s_{1,1}^*(z^*), \quad s_{1,2}(z) = -s_{2,1}^*(z^*). \]
 \[s_{1,1}(z) = (q_+^*/q_-^*) s_{2,2}(-q_o^2/z), \quad s_{1,2}(z) = (q_+/q_-) s_{2,1}(-q_o^2/z). \]

- Discrete spectrum: \(z_1, \ldots, z_N \in \mathbb{C}^+ \) s.t. \(s_{1,1}(z_n) = 0 \):
 \[\phi_{+,1}(x, t, z_n) = b_n \phi_{-,2}(x, t, z_n), \]

- Symmetries \(\Rightarrow \) eigenvalues appear in quartets:
 \(\{z_n, z_n^*, -q_o^2/z, -q_o^2/z^*\}_{n=1}^N \).
Symmetries and discrete spectrum

- The scattering problem admits two independent symmetries:
 (unlike focusing NLS with ZBC, and like defocusing NLS with NZBC)

\[z \mapsto z^* \quad \text{(UHP/LHP)} \iff (k, \lambda) \mapsto (k^*, \lambda^*) \quad \text{(same sheet)}, \]
\[z \mapsto -q_0^2 / z \quad \text{(outside/inside } C_0), \iff (k, \lambda) \mapsto (k, -\lambda) \quad \text{(opposite sheets)}, \]

- Symmetries of Jost solutions:
 \[\phi_\pm(x, t, z) = \sigma_2 \phi^*_\pm(x, t, z^*) \sigma_2, \quad \phi_\pm(x, t, z) = (i/z) \phi_\pm(x, t, -q_0^2 / z) \sigma_3 Q_\pm. \]

- Symmetries of scattering coeffs
 \[s_{2,2}(z) = s_{1,1}^*(z^*), \quad s_{1,2}(z) = -s_{2,1}^*(z^*). \]
 \[s_{1,1}(z) = (q^+/q_-^*) s_{2,2}(-q_0^2 / z), \quad s_{1,2}(z) = (q_+ / q_-^*) s_{2,1}(-q_0^2 / z). \]

- Discrete spectrum: \(z_1, \ldots, z_N \in \mathbb{C}^+ \) s.t. \(s_{1,1}(z_n) = 0 \):
 \[\phi_{+,1}(x, t, z_n) = b_n \phi_{-,2}(x, t, z_n), \]

- Symmetries \(\Rightarrow \) eigenvalues appear in quartets:
 \[\{z_n, z_n^*, -q_0^2 / z, -q_0^2 / z^*\}_{n=1}^N. \]

- Notation: \(\zeta_n = z_n, \zeta_{n+n} = -q_0^2 / z_n \quad n = 1, \ldots, N. \)

Norming constants: \(C_n = b_n / s_{1,1}^*(z_n) \quad \forall n = 1, \ldots, N, \)
+ symmetric counterparts.
Riemann-Hilbert problem

Starting point (as usual): scattering relation, \(\mu_+ = \mu_- e^{i\theta \sigma_3} S e^{-i\theta \sigma_3} \quad \forall z \in \Sigma. \)

- Sectionally meromorphic matrices:
 \[
 M^+(x, t, z) = (\mu_{+,1}, \mu_{-,2}/s_{1,1}), \quad M^-(x, t, z) = (\mu_{-,1}/s_{2,2}, \mu_{+,2}).
 \]
 (Subscripts \(\pm \): normalization as \(x \to \pm \infty \). Superscripts \(\pm \): analyticity.)

- Riemann-Hilbert problem (RHP):
 \[
 M^- = M^+(I - G) \quad \forall z \in \Sigma.
 \]
 Jump matrix:
 \[
 G(x, t, z) = \begin{pmatrix}
 0 & -e^{2i\theta} \tilde{b} \\
 e^{-2i\theta} b & b \tilde{b}
 \end{pmatrix}.
 \]
 Reflection coefficients:
 \[
 b(z) = s_{2,1}/s_{1,1}, \quad \tilde{b}(z) = s_{1,2}/s_{2,2} = -b^*(z^*).\]
Riemann-Hilbert problem

Starting point (as usual): scattering relation, \(\mu_+ = \mu_- e^{i\theta \sigma_3} S e^{-i\theta \sigma_3} \quad \forall z \in \Sigma. \)

- Sectionally meromorphic matrices:
 \[
 M^+(x, t, z) = \left(\mu_{+,1}, \mu_{-,2}/s_{1,1} \right), \quad M^-(x, t, z) = \left(\mu_{-,1}/s_{2,2}, \mu_{+,2} \right).
 \]
 (Subscripts \(\pm\): normalization as \(x \to \pm \infty\). Superscripts \(\pm\): analyticity.)

- Riemann-Hilbert problem (RHP):
 \[
 M^- = M^+(I - G) \quad \forall z \in \Sigma.
 \]
 Jump matrix:
 \[
 G(x, t, z) = \begin{pmatrix}
 0 & -e^{2i\theta} \tilde{b} \\
 e^{-2i\theta} b & b \tilde{b}
 \end{pmatrix}. \]
 Reflection coefficients:
 \[
 b(z) = s_{2,1}/s_{1,1}, \quad \tilde{b}(z) = s_{1,2}/s_{2,2} = -b^*(z^*). \]

- Asymptotics:
 \[
 \mu_{\pm} = I + O(1/z) \quad \text{as} \quad z \to \infty, \quad \mu_{\pm} = (i/z)\sigma_3 Q_{\pm} + O(1) \quad \text{as} \quad z \to 0.
 \]

- Regularize the RHP: subtract the asymptotic behavior as \(z \to \infty\)
 and the pole contributions at \(z = 0\) and \(z = \zeta_n, \ z = \zeta_n^*, \ n = 1, \ldots, 2N.\)
 (Assuming zeros of scattering coefficients are simple and finite.)
Solution of RHP and reconstruction formula

- Apply Cauchy transform and use Plemelj’s formulae:
 \[M(x, t, z) = I + \frac{i}{z} \sigma_3 Q_- + \sum_{n=1}^{2N} \left(\frac{\text{Res}_{\zeta_n} M^+}{z - \zeta_n} + \frac{\text{Res}_{\zeta_n^*} M^-}{z - \zeta_n^*} \right) \]
 \[+ \frac{1}{2\pi i} \int_{\Sigma} \frac{M^+(x, t, \zeta)}{\zeta - z} G(x, t, \zeta) \, d\zeta. \]

- Evaluate residue conditions as usual ⇒ closed integral-algebraic system.

- Evaluate the asymptotics of the solution of the RHP as \(z \to \infty \).
 Compare with asymptotics of eigenfunctions ⇒ reconstruction formula:
 \[q(x, t) = q_- + i \sum_{n=1}^{2N} \tilde{C}_n e^{2i\theta(\zeta_n^*)} \mu_{-1,1}(\zeta_n^*) + \frac{1}{2\pi} \int_{\Sigma} (M^+ G)_{1,2}(\zeta) \, d\zeta. \]
Solution of RHP and reconstruction formula

- Apply Cauchy transform and use Plemelj’s formulae:

\[M(x, t, z) = I + \frac{i}{z}\sigma_3 Q_\text{-} + \sum_{n=1}^{2N} \left(\frac{\text{Res}_{\zeta_n} M^+}{z - \zeta_n} + \frac{\text{Res}_{\zeta_n^*} M^-}{z - \zeta_n^*} \right) \]

\[+ \frac{1}{2\pi i} \int_\Sigma \frac{M^+(x, t, \zeta)}{\zeta - z} G(x, t, \zeta) \, d\zeta. \]

- Evaluate residue conditions as usual \(\Rightarrow \) closed integral-algebraic system.

- Evaluate the asymptotics of the solution of the RHP as \(z \to \infty \).

 Compare with asymptotics of eigenfunctions \(\Rightarrow \) reconstruction formula:

\[q(x, t) = q_\text{-} + i \sum_{n=1}^{2N} \tilde{C}_n e^{2i\theta(\zeta_n^*)} \mu_{-1,1}(\zeta_n^*) + \frac{1}{2\pi} \int_\Sigma (M^+G)_{1,2}(\zeta) \, d\zeta. \]

- Reflectionless potentials: \(q(x, t) = q_\text{-} - i \det G^\text{ext} / \det G \),

 [note \(G \) is \(2N \times 2N \) and \(G^\text{ext} \) is \((2N+1) \times (2N+1) \)]
Solution of RHP and reconstruction formula

- Apply Cauchy transform and use Plemelj’s formulae:

\[
M(x, t, z) = I + \frac{i}{z} \sigma_3 Q - \sum_{n=1}^{2N} \left(\frac{\text{Res}_{\zeta_n} M^+}{z - \zeta_n} + \frac{\text{Res}_{\zeta_n^*} M^-}{z - \zeta_n^*} \right) + \frac{1}{2\pi i} \int_{\Sigma} \frac{M^+(x, t, \zeta)}{\zeta - z} G(x, t, \zeta) \, d\zeta.
\]

- Evaluate residue conditions as usual \(\Rightarrow \) closed integral-algebraic system.

- Evaluate the asymptotics of the solution of the RHP as \(z \to \infty \).

Compare with asymptotics of eigenfunctions \(\Rightarrow \) reconstruction formula:

\[
q(x, t) = q_- + i \sum_{n=1}^{2N} \tilde{C}_n e^{2i\theta(\zeta_n^*)} \mu_{-1,1}(\zeta_n^*) + \frac{1}{2\pi i} \int_{\Sigma} (M^+ G)_{1,2}(\zeta) \, d\zeta.
\]

- Reflectionless potentials: \(q(x, t) = q_- - i \det G^\text{ext} / \det G \),

[note \(G \) is \(2N \times 2N \) and \(G^\text{ext} \) is \((2N+1) \times (2N+1)\)]

- Trace formulae:

\[
s_{1,1}(z) = \prod_{n=1}^{2N} \frac{z - \zeta_n}{z - \zeta_n^*} \exp \left\{ - \frac{1}{2\pi i} \int_{\Sigma} \log \left[1 + b(\zeta) b^*(\zeta^*) \right] \frac{1}{z - \zeta} \, d\zeta \right\},
\]

- “Theta” condition:

\[
\arg(q_+/q_-) = -4 \sum_{n=1}^{N} \arg z_n.
\]
Outline

0. Introduction

1. IST for focusing NLS with NZBC
 Direct problem
 Inverse problem

2. Soliton solutions of focusing NLS with NZBC

3. The Benjamin-Feir instability revisited

4. Defocusing Manakov system with NZBC

5. Focusing Manakov system with NZBC

6. Conclusions
Stationary one-soliton solutions

- Stationary one-soliton solutions: Let $N = 1$, $z_1 = iZq_o$, with $Z > 1$:

$$q(x, t) = q_- \frac{\cosh \chi + \frac{1}{2} A (c_1 \sin s - ic_2 \cos s)}{\cosh \chi + A \sin s},$$

$$\chi = \frac{1}{2} q_o (Z - 1/Z)x + \xi,$$

$$s = q_o^2 (Z^2 - 1/Z^2)t + \varphi,$$

$$A = 2/(Z + 1/Z), \quad c_1 = Z^2 + 1/Z^2, \quad c_2 = Z^2 - 1/Z^2.$$
Stationary one-soliton solutions

- Stationary one-soliton solutions: Let $N = 1$, $z_1 = iZq_o$, with $Z > 1$:

$$q(x, t) = q_- \frac{\cosh \chi + \frac{1}{2} A (c_1 \sin s - ic_2 \cos s)}{\cosh \chi + A \sin s},$$

$$\chi = \frac{1}{2} q_o(Z - 1/Z)x + \xi,$$

$$s = q_o^2(Z^2 - 1/Z^2)t + \varphi,$$

$$A = 2/(Z + 1/Z), \quad c_1 = Z^2 + 1/Z^2, \quad c_2 = Z^2 - 1/Z^2.$$

- This solution:
 - is t-periodic
 - tends to q_- as $|x| \to \infty$ ($\Delta \theta = 0$ here)
 - (opposite behavior compared to the homoclinic solutions of NLS with periodic BCs...)
 - was found by Kuznetsov in 1977 and Ma in 1979
 - reduces to the bright-soliton solution of NLS as $q_o \to 0$,
 - in the limit $Z \to 1$ yields the Peregrine solution (Peregrine, 1983):

$$q_{\text{peregrine}}(x, t) = \frac{(16t^2 + 4(x^2 - 4it) - 3)(16t^2 + 4x^2 + 1)}{(16t^2 + 4x^2 + 1)}.$$
Traveling 1-soliton solutions

Four-parameter family of 1-soliton solutions
(Watanabe-Tajiri 1991; Zakharov-Gelash 2011)

Left: \(z_1 = 1 + i (\Delta \theta = \pi) \).
Right: \(z_1 = 2 e^{i \pi/6} (\Delta \theta = 2\pi/3) \).
Traveling 1-soliton solutions

Four-parameter family of 1-soliton solutions
(Watanabe-Tajiri 1991; Zakharov-Gelash 2011)

Left: $z_1 = 1 + i$ ($\Delta \theta = \pi$).
Right: $z_1 = 2 e^{i\pi/6}$ ($\Delta \theta = 2\pi/3$)

Unlike NLS with ZBC, these are not simply Galilean boosts of the stationary solutions!
(no asymptotic carrier phase, different spectrum)
Traveling 1-soliton solutions

Four-parameter family of 1-soliton solutions
(Watanabe-Tajiri 1991; Zakharov-Gelash 2011)

Left: \(z_1 = 1 + i (\Delta \theta = \pi) \).

Right: \(z_1 = 2 e^{i \pi/6} (\Delta \theta = 2\pi/3) \).

Unlike NLS with ZBC, these are not simply Galilean boosts of the stationary solutions!
(no asymptotic carrier phase, different spectrum)

(But as \(q_o \to 0 \) both the “traveling” solitons and the Galilean-boosted stationary solutions do reduce to the traveling solitons of NLS with ZBC.)
One-parameter family generalization of Peregrine soliton

Explicit form of the traveling 1-soliton solutions:

\[q(x, t) = \frac{c_o \cosh(\chi + 2i\alpha) + c_1(Z^2 \sin(s + 2\alpha) - \sin s) - ic_2(Z^2 \cos(s + 2\alpha) - \cos s)}{c_o \cosh \chi + Z^2 \sin(s + 2\alpha) - \sin s}, \]

\[z_1 = iZ_0 e^{-i\alpha}, \quad \chi = i(\theta(z_1) - \theta(z_1^*)) + \xi, \quad s = \theta(z) + \theta(z_1^*) + \varphi, \quad c_j = \ldots \]
One-parameter family generalization of Peregrine soliton

Explicit form of the traveling 1-soliton solutions:

\[
q(x, t) = \frac{c_o \cosh(\chi + 2i\alpha) + c_1 (Z^2 \sin(s + 2\alpha) - \sin s) - ic_2 (Z^2 \cos(s + 2\alpha) - \cos s)}{c_o \cosh \chi + Z^2 \sin(s + 2\alpha) - \sin s},
\]

\[
z_1 = iZq_o e^{-i\alpha}, \quad \chi = i(\theta(z_1) - \theta(z_1^*)) + \xi, \quad s = \theta(z) + \theta(z_1^*) + \varphi, \quad c_j = \ldots
\]

The limit \(Z \to 1\) yields Akhmediev’s “breathers” (1988)

\[
q_\alpha(x, t) = \frac{\cosh(2 \sin(2\alpha)t - 2i\alpha) - \cos \alpha \cos(2 \sin(\alpha)x)}{\cosh(2 \sin(2\alpha)t) - \cos \alpha \cos(2 \sin(\alpha)x)}.
\]
One-parameter family generalization of Peregrine soliton

Explicit form of the traveling 1-soliton solutions:

\[q(x, t) = \frac{c_0 \cosh(\chi + 2i\alpha) + c_1(Z^2 \sin(s + 2\alpha) - \sin s) - ic_2(Z^2 \cos(s + 2\alpha) - \cos s)}{c_0 \cosh \chi + Z^2 \sin(s + 2\alpha) - \sin s}, \]

\[z_1 = iZq_0 e^{-i\alpha}, \quad \chi = i(\theta(z_1) - \theta(z_1^*)) + \xi, \quad s = \theta(z) + \theta(z_1^*) + \varphi, \quad c_j = \ldots \]

The limit \(Z \to 1 \) yields Akhmediev’s “breathers” (1988)

\[q_\alpha(x, t) = \frac{\cosh(2 \sin(2\alpha)t - 2i\alpha) - \cos \alpha \cos(2 \sin(\alpha)x)}{\cosh(2 \sin(2\alpha)t) - \cos \alpha \cos(2 \sin(\alpha)x)}. \]

This solution:
- is \(x \)-periodic, with period \(\pi / \sin \alpha \),
- has \(q_{\text{max}} = (\cos \alpha - \cos(2\alpha))/(1 - \cos \alpha) \),
- tends to \(e^{\pm 2i\alpha} \) as \(t \to \pm \infty \), reduces to Peregrine’s as \(\alpha \to 0 \).

\(\alpha = \pi / 4 \)

\(\alpha = \pi / 3 \)

\(\alpha = 2\pi / 5 \)

\(\alpha = 0 \)
Multi-soliton solutions

Recall \(q(x, t) = q_- - i \det G^{\text{ext}} / \det G \).

Of course one can also easily write down multi-soliton solutions.

Two-soliton solutions:

Left: \(z_1 = 2i, z_2 = 3i \).

Right: \(z_1 = -1 + 2i, z_2 = 2 + i \).

And so on...
Outline

0. Introduction

1. IST for focusing NLS with NZBC
 Direct problem
 Inverse problem

2. Soliton solutions of focusing NLS with NZBC

3. The Benjamin-Feir instability revisited

4. Defocusing Manakov system with NZBC

5. Focusing Manakov system with NZBC

6. Conclusions
The Benjamin-Feir instability revisited

- Benjamin-Feir instability (1967):
 plane wave solutions of focusing NLS exhibit modulational instability (MI)
 (i.e., the uniform solution \(q(x, t) = q_0 e^{2i\omega_0 t} \) is linearly unstable.)

- Essence of phenomenon w/ periodic BCs is known (homoclinic solutions)
 [Ablowitz-Ma 1981; Forest-McLaughlin-Overman 1991].
 - But it’s useful to understand differences btw periodic case and whole line
 (e.g.: w/ periodic BCs, there is a threshold for the presence of unstable modes)
 - Also, IST for periodic case cannot solve the full IVP!
The Benjamin-Feir instability revisited

- Benjamin-Feir instability (1967): plane wave solutions of focusing NLS exhibit modulational instability (MI) (i.e., the uniform solution \(q(x, t) = q_o e^{2iq_o^2 t} \) is linearly unstable.)

- Essence of phenomenon w/ periodic BCs is known (homoclinic solutions) [Ablowitz-Ma 1981; Forest-McLaughlin-Overman 1991].
 - But it’s useful to understand differences btw periodic case and whole line (e.g.: w/ periodic BCs, there is a threshold for the presence of unstable modes)
 - Also, IST for periodic case cannot solve the full IVP!

- Special case: piecewise constant, box-like ICs.

\[
q(x, 0) = \begin{cases}
q_- & x < -L, \\
A e^{i\alpha} & |x| < L, \\
q_+ & x > L.
\end{cases}
\]
The Benjamin-Feir instability revisited

- Benjamin-Feir instability (1967): plane wave solutions of focusing NLS exhibit modulational instability (MI) (i.e., the uniform solution \(q(x, t) = q_o e^{2iq_o^2t} \) is linearly unstable.)

- Essence of phenomenon w/ periodic BCs is known (homoclinic solutions) [Ablowitz-Ma 1981; Forest-McLaughlin-Overman 1991].
 - But it’s useful to understand differences btw periodic case and whole line (e.g.: w/ periodic BCs, there is a threshold for the presence of unstable modes)
 - Also, IST for periodic case cannot solve the full IVP!

- Special case: piecewise constant, box-like ICs.

 \[
 q(x, 0) = \begin{cases}
 q_- & x < -L, \\
 A e^{i\alpha} & |x| < L, \\
 q_+ & x > L.
 \end{cases}
 \]

- Theorem: when \(A > q_o \), no threshold in \(L_2 \) norm for discrete eigenvalues (this is unlike ZBC, and like KdV and defocusing NZBC case)

- This suggests that the nonlinear stage of MI manifests itself through the formation of solitons [cf. Zakharov-Gelash 2011, 2012]
Outline

0. Introduction

1. IST for focusing NLS with NZBC
 Direct problem
 Inverse problem

2. Soliton solutions of focusing NLS with NZBC

3. The Benjamin-Feir instability revisited

4. Defocusing Manakov system with NZBC

5. Focusing Manakov system with NZBC

6. Conclusions
Defocusing Manakov with NZBC: analyticity defect

- 3×3 Lax pair for the defocusing Manakov system: $\phi_x = X \phi$ & $\phi_t = T \phi,$

\[X = -ikJ + Q, \quad J = \begin{pmatrix} 1 & 0^T \\ 0 & -I_2 \end{pmatrix}, \quad Q = \begin{pmatrix} 0 & q^T \\ r & O_2 \end{pmatrix}, \quad r = q^* . \]

- Jost solutions: $\phi_\pm(x, t, z) = Y_\pm(z) e^{i \Theta(x, t, z)} + o(1)$ as $x \to \pm \infty,$

\[Y_\pm = \begin{pmatrix} 1 & 0 & -iq_o/z \\ ir_\pm/z & q_\pm^T/q_o & r_\pm/q_o \end{pmatrix}, \quad \Theta = \Lambda(z)x - \Omega(z)t, \]

$\Lambda = \text{diag}(-\lambda, k, \lambda), \quad \Omega = -\text{diag}(-2k\lambda, k^2 + \lambda^2, 2k\lambda), \quad \lambda^2 = k^2 - q_o^2.$

- Uniformization: $z = k + \lambda; \quad k \in \mathbb{C}_I \Rightarrow z \in \text{UHP}, \quad k \in \mathbb{C}_\Pi \Rightarrow z \in \text{LHP}.$
Defocusing Manakov with NZBC: analyticity defect

- **3×3 Lax pair for the defocusing Manakov system:** \(\phi_x = X \phi \) & \(\phi_t = T \phi \),

\[
X = -ikJ + Q, \quad J = \begin{pmatrix} 1 & 0^T \\ 0 & -I_2 \end{pmatrix}, \quad Q = \begin{pmatrix} 0 & q^T \\ r & O_2 \end{pmatrix}, \quad r = q^*.
\]

- **Jost solutions:** \(\phi_{\pm}(x, t, z) = Y_{\pm}(z) e^{i\Theta(x, t, z)} + o(1) \) as \(x \to \pm \infty \),

\[
Y_{\pm} = \begin{pmatrix} 1 & 0 & -iq_o/z \\ ir_{\pm}/z & q_{\pm}^T/q_o & r_{\pm}/q_o \end{pmatrix}, \quad \Theta = \Lambda(z)x - \Omega(z)t,
\]

\(\Lambda = \text{diag}(-\lambda, k, \lambda), \quad \Omega = -\text{diag}(-2k\lambda, k^2 + \lambda^2, 2k\lambda), \quad \lambda^2 = k^2 - q_o^2. \)

- **Uniformization:** \(z = k + \lambda; \quad k \in \mathbb{C}_I \Rightarrow z \in \text{UHP}, \quad k \in \mathbb{C}_II \Rightarrow z \in \text{LHP}. \)

- **Continuous spectrum:** \(k \) s.t. \(\lambda \in \mathbb{R}, \) i.e. \(k \in (-\infty, -q_o] \cup [q_o, \infty) \Rightarrow z \in \mathbb{R}. \)

- **Scattering matrix:**

\[
\forall z \in \mathbb{R} \quad \phi_- = \phi_+ A, \quad \text{or} \quad \phi_+ = \phi_- B, \quad \text{with} \quad B = A^{-1}.
\]

- **Analyticity:**

\(\phi_{-,1}, \phi_{+,3}, a_{1,1}, b_{3,3} : \quad z \in \text{UHP}, \quad \phi_{+,1}, \phi_{-,3}, b_{1,1}, a_{3,3} : \quad z \in \text{UHP}. \)

- **Problem:** \(\phi_{-,2} \) & \(\phi_{+,2} \) are nowhere analytic!
Defocusing Manakov with NZBC: adjoint problem

- “Adjoint” problem: \(\tilde{\phi}_x = (ikJ + Q^*)\tilde{\phi} \) & \(\tilde{\phi}_t = T^*\tilde{\phi} \).
 [cf. Kaup 1976, IST for three-wave interaction equations]

- Lemma: if \(\tilde{u}(x, t, z) \) & \(\tilde{v}(x, t, z) \) solve the adjoint Lax pair,
 \[w(x, t, z) = e^{i\theta} J(\tilde{u} \times \tilde{v}) \]
 solves the original Lax pair [with \(\theta(x, t, z) = kx + (k^2 + \lambda^2)t \)].
Defocusing Manakov with NZBC: adjoint problem

- “Adjoint” problem: \(\tilde{\phi}_x = (ikJ + Q^*)\tilde{\phi} \) & \(\tilde{\phi}_t = T^*\tilde{\phi} \).
 [cf. Kaup 1976, IST for three-wave interaction equations]
- Lemma: if \(\tilde{u}(x, t, z) \) & \(\tilde{v}(x, t, z) \) solve the adjoint Lax pair,
 \[w(x, t, z) = e^{i\theta} J(\tilde{u} \times \tilde{v}) \]
 solves the original Lax pair [with \(\theta(x, t, z) = kx + (k^2 + \lambda^2)t \)].
- Auxiliary eigenfunctions:
 \[\chi(x, t, z) = -e^{i\theta} J(\tilde{\phi}_{-,3} \times \tilde{\phi}_{+,1})/\gamma, \quad \bar{\chi}(x, t, z) = -e^{i\theta} J(\tilde{\phi}_{-,1} \times \tilde{\phi}_{+,3})/\gamma. \]
 ○ Lemma: \(\chi \) & \(\bar{\chi} \) are analytic for \(z \in \text{UHP} \) & \(z \in \text{LHP} \), respectively,
- Corollary: \((\phi_{-,1}, \chi, \phi_{+,3})\) & \((\phi_{+,1}, \bar{\chi}, \phi_{-,3})\) form fundamental analytic eigenfunctions in \(\text{UHP} \) and \(\text{LHP} \), respectively.
Defocusing Manakov system with NZBC: adjoint problem

- “Adjoint” problem: \(\ddot{\phi}_x = (ikJ + Q^*) \phi \) & \(\ddot{\phi}_t = T^* \phi \).
 [cf. Kaup 1976, IST for three-wave interaction equations]

- Lemma: if \(\tilde{u}(x, t, z) \) & \(\tilde{v}(x, t, z) \) solve the adjoint Lax pair,
 \[w(x, t, z) = e^{i\theta} J(\tilde{u} \times \tilde{v}) \]
solves the original Lax pair [with \(\theta(x, t, z) = kx + (k^2 + \lambda^2)t \)].

- Auxiliary eigenfunctions:
 \[\chi(x, t, z) = -e^{i\theta} J(\tilde{\phi}_{-3} \times \tilde{\phi}_{+1})/\gamma, \quad \bar{\chi}(x, t, z) = -e^{i\theta} J(\tilde{\phi}_{-1} \times \tilde{\phi}_{+3})/\gamma. \]

 - Lemma: \(\chi \) & \(\bar{\chi} \) are analytic for \(z \in \text{UHP} \) & \(z \in \text{LHP} \), respectively,

 - Corollary: \((\phi_{-1}, \chi, \phi_{+3}) \) & \((\phi_{+1}, \bar{\chi}, \phi_{-3}) \) form fundamental analytic eigenfunctions in UHP and LHP, respectively.

- Symmetries:
 \[\phi_\pm(x, t, z) = \phi_\pm(x, t, q_o^2/z) \prod(z) = J(\phi_{\pm}^\dagger(x, t, z^*))^{-1} C(z), \]
 \[\prod(z) = \begin{pmatrix} 0 & 0 & -iq_o/z \\ 0 & 1 & 0 \\ iq_o/z & 0 & 0 \end{pmatrix}, \quad C = \text{diag}(-\gamma, 1, \gamma), \quad \gamma = \det Y_\pm = 1 - q_o^2/z^2. \]
 - Note \((M^\dagger)^{-1} = (M_2 \times M_3, M_3 \times M_1, M_1 \times M_2)/\det M. \)
Defocusing Manakov with NZBC: dark-bright solitons

- \(k_n \in [-q_o, q_o] \Rightarrow |z_n| = q_o \Rightarrow \) dark solitons (same as scalar NLS) (apart from constant unit polarization vector)

- \(k_n \notin \mathbb{R} \Rightarrow |z_n| < q_o \Rightarrow \) dark-bright solitons:

 \[
 q_1(x, t) = q_o (\cos \alpha + i \sin \alpha \tanh S), \quad q_2(x, t) = \nu \sin \alpha \sqrt{q_o^2 - |z_o|^2} \sech S e^{i\theta},
 \]

 \[
 S(x, t) = \nu(x - x_o - 2kt), \quad \theta(x, t) = -kx + (k^2 - \nu^2)t,
 \]

 \(k = \text{Re } z_o = |z_o| \cos \alpha, \quad \nu = \text{Im } z_o = |z_o| \sin \alpha. \)
Defocusing Manakov with NZBC: double-pole solutions

- Scalar focusing NLS with NZBC admits double-pole solutions
 - obtained when the analytic scattering coefficient has a double zero
 - similar to a pair of solitons with same amplitude and velocity, but diverge from each other logarithmically

- Discrete eigenvalues of scalar defocusing NLS with NZBC are simple. But proof does not generalize to Manakov system.
Defocusing Manakov with NZBC: double-pole solutions

- Scalar focusing NLS with NZBC admits double-pole solutions
 - obtained when the analytic scattering coefficient has a double zero
 - similar to a pair of solitons with same amplitude and velocity, but diverge from each other logarithmically

- Discrete eigenvalues of scalar defocusing NLS with NZBC are simple. But proof does not generalize to Manakov system.

- New: Defocusing Manakov with NZBC admits double-pole solutions. Need to enlarge the Riemann-Hilbert problem & include the derivatives of the eigenfunctions w.r.t. z as additional unknowns.
Outline

0. Introduction

1. IST for focusing NLS with NZBC
 Direct problem
 Inverse problem

2. Soliton solutions of focusing NLS with NZBC

3. The Benjamin-Feir instability revisited

4. Defocusing Manakov system with NZBC

5. Focusing Manakov system with NZBC

6. Conclusions
Focusing Manakov with NZBC: IST outline

- Lax pair is essentially the same, but now $\lambda^2 = k^2 + q_o^2$ (as in scalar case).
- Difference from defocusing case:
 - each eigenfunction and diagonal entry of scattering matrix is analytic somewhere,
 - but four different fundamental domains of analyticity are present.
As in defocusing case, in each region, only two eigenfunctions and scattering coefficients are analytic.
- One can still use the adjoint problem, but four auxiliary eigenfunctions are now necessary.

\[
\begin{align*}
\text{Re } z & \\
\text{Im } z & \\
0^- & \\
0^+ & \\
i q_o & \\
i q_o & \\
\end{align*}
\]

\[
\begin{align*}
(\chi_4, \phi_{+,2}, \phi_{-,3}) & \\
a_{3,3}, b_{2,2} & \\
(\chi_3, \phi_{-,2}, \phi_{+,3}) & \\
a_{2,3}, b_{3,3} & \\
& \\
(\phi_{-,1}, \phi_{+,2}, \chi_1) & \\
a_{1,1}, b_{2,2} & \\
(\phi_{+,1}, \phi_{-,2}, \chi_2) & \\
a_{2,2}, b_{1,1} & \\
\end{align*}
\]
Focusing Manakov with NZBC: IST outline

- Lax pair is essentially the same, but now $\lambda^2 = k^2 + q_o^2$ (as in scalar case).
- Difference from defocusing case:
 - each eigenfunction and diagonal entry of scattering matrix is analytic somewhere,
 - but four different fundamental domains of analyticity are present.

As in defocusing case, in each region, only two eigenfunctions and scattering coefficients are analytic.

- One can still use the adjoint problem, but four auxiliary eigenfunctions are now necessary.
- Discrete eigenvalues still appear in symmetric quartets (as in the scalar case)
 \[\{z_n, z_n^*, -q_o^2/z_n, -q_o^2/z_n^*\} \].
Focusing Manakov with NZBC: IST outline

- Lax pair is essentially the same, but now \(\lambda^2 = k^2 + q_o^2 \) (as in scalar case).
- Difference from defocusing case:
 - each eigenfunction and diagonal entry of scattering matrix is analytic somewhere,
 - but four different fundamental domains of analyticity are present.
 As in defocusing case, in each region, only two eigenfunctions and scattering coefficients are analytic.
- One can still use the adjoint problem, but four auxiliary eigenfunctions are now necessary.
- Discrete eigenvalues still appear in symmetric quartets (as in the scalar case) \(\{z_n, z_n^*, -q_o^2/z_n, -q_o^2/z_n^*\} \).
- Three kinds of discrete eigenvalues.
 Let \(z_o \in \text{UHP} \cap \{ |z_o| > q_o \} \).
 (i) \(a_{1,1}(z_o) = 0 \) & \(b_{2,2}(z_o) \neq 0 \),
 (ii) \(a_{1,1}(z_o) \neq 0 \) & \(b_{2,2}(z_o) = 0 \),
 (iii) \(a_{1,1}(z_o) = b_{2,2}(z_o) = 0 \).
 Each kind of eigenvalue generates a different kind of solution.
Focusing Manakov with NZBC: soliton solutions

- Eigenvalues of 1st kind yield the same kind of solitons as scalar NLS.
- Eigenvalues of 2nd kind:

- Eigenvalues of 3rd kind:
Outline

0. Introduction

1. IST for focusing NLS with NZBC
 Direct problem
 Inverse problem

2. Soliton solutions of focusing NLS with NZBC

3. The Benjamin-Feir instability revisited

4. Defocusing Manakov system with NZBC

5. Focusing Manakov system with NZBC

6. Conclusions
Ongoing/future work

- Focusing NLS:
 - detailed comparison with homoclinic instabilities of periodic case
 - use IST to characterize Benjamin-Feir (growth rate, most unstable mode...)
 (this is not possible in the periodic case!)
 - compare with linearization

- Focusing/defocusing NLS:
 - develop IST for ICs with different amplitudes as $x \to \pm \infty$
 (this has not been done even in the scalar defocusing case!)
 - study long-time asymptotics!

- Focusing Manakov: classify all the soliton solutions

- Defocusing N-component: obtain and classify all soliton solutions
 (The adjoint problem trick does not generalize to an arbitrary components,
 so a different formulation using tensors/forms is used...)

- Focusing N-component NLS with NZBC: completely open!
Conclusions

References

NZBC:
- Ablowitz, B & Prinari, Inv. Probl. 23, 1711 (2007) [defocusing integrable discrete NLS]
- B & Kovacic, in preparation [Maxwell-Bloch equations]
- B & Fagerstrom, in preparation [discrete eigenvalues of focusing NLS]
- B & Kraus, in preparation [double-pole solution of defocusing Manakov]
- B & Kraus, in preparation [focusing Manakov]

Boundary value problems:
- B & Hwang, Inv. Probl. 24 065011 (2008) [IBVP for AL with generic BCs]
- B & Hwang, Applic. Anal. 89, 627 (2010) [AL with 2 special kinds of BCs]
- B & Fokas, to appear [relation btw solution by extension and by Fokas’ method]

Thank you for your attention!