Pre-Test 2: M0030M - Integral Calculus.

Test your knowledge on Integral Calculus for the course M0030M by solving the problems in this test.

It should not take you longer than 90 minutes.

Problem 1:

Evaluate the following definite integral, if possible,

$$
\int_{1}^{e} \frac{1}{x} \cos \left(\frac{\pi}{2} \ln x\right) d x
$$

Svar 1/Answer 1:
A: $1 / \pi$,
B: $2 / \pi$,
C: 1 ,
D: $1 / 2$,

E: Inget av de givna svaren. / None of the given answers.

Problem 2:

Evaluate the average value of the function

$$
f(x)=\frac{2 x+4}{x^{3}+2 x^{2}+2 x}
$$

on $[1,2]$.
Svar 2/Answer 2:
A: $\ln (2)$,
B: 3/2,
C: $\ln (5)$,
D: $1 / 2$,

E: Inget av de givna svaren. / None of the given answers.

Problem 3:

Evaluate the area under the curve

$$
y=\frac{x^{2}}{\sqrt{1-x^{2}}}
$$

and above the x-axis between $x=0$ and $x=1$.
Svar 3/Answer 3:
A: 1
B: $1 / 2$,
C: $\pi / 4$,
D: The area is not finite.

E: Inget av de givna svaren. / None of the given answers.

Problem 4:

Let

$$
I_{n}=\int \frac{1}{\left(x^{2}+a^{2}\right)^{n}} d x .
$$

Then the following reduction formula is valid:

$$
I_{n}=\frac{1}{2 a^{2}(n-1)}\left[\frac{x}{\left(x^{2}+a^{2}\right)^{n-1}}+(2 n-3) I_{n-1}\right], \quad n=2,3,4, \ldots .
$$

Evaluate the definite integral

$$
\int_{0}^{1} \frac{1}{\left(x^{2}+1\right)^{2}} d x
$$

by using the above reduction formula.
Svar 4/Answer 4:
A: $1 / 2$,
B: $\ln (2)$,
C: $\pi / 4$,
D: $1 / 4+\pi / 8$

E: Inget av de givna svaren. / None of the given answers.

Problem 5:

Evaluate the following definite integral, if possible:

$$
\int_{0}^{1} x \ln (x) d x .
$$

Svar 5/Answer 5:
A: $-1 / 2$,
B: $-1 / 4$,
$\mathrm{C}:-1$,
D: The integral diverges.

E: Inget av de givna svaren. / None of the given answers.

Problem 6:

Find the volume of the solid of revolution formed by revolving the plane region bounded by

$$
\begin{aligned}
& y=x^{2}-x^{5}, \quad y=0 \\
& 0 \leq x \leq 1
\end{aligned}
$$

about the y-axis.
Svar 6/Answer 6:
A: $3 \pi / 14$,
B: $3 \pi / 28$,
C: $\pi / 7$,
D: 1

E: Inget av de givna svaren. / None of the given answers.

Problem 7: Vilka av följande påståenden är sanna? Which of the following statements are true?

I: The arc length s of the curve $y=e^{x} \cos x$ in the interval $0 \leq x \leq \pi / 2$ can be calculated by the following definite integral:

$$
s=\int_{0}^{\pi / 2}\left[1+e^{2 x}(1-2 \cos x \sin x)\right]^{1 / 2} d x .
$$

II: Consider the curve $x=e^{y}+y$ on the interval $0 \leq y \leq 2$ and rotate this curve about the x-axis to create a surface area S of revolution. The area S can be calculated by the following definite integral:

$$
S=2 \pi \int_{0}^{2} y\left[2+2 e^{y}+e^{2 y}\right]^{1 / 2} d y
$$

III: $\frac{d}{d x}\left(x \int_{x^{2}}^{3} e^{-t^{2}} d t\right)=\int_{x^{2}}^{3} e^{-t^{2}} d t-2 x^{2} e^{-x^{4}}$.
IV: $\int_{-1}^{1} \frac{1}{x} d x=0$.

Svar 7/Answer 7:
A: Alla påståenden är sanna. All statements are true.
B: Bara I, II och III är sanna. Only I, II and III are true.
C: Bara I, III och IV är sanna. Only I, III and IV are true.
D: Bara II och IV är sanna. Only II and IV are true.
E: Bara III är sanna. Only III is true.

Problem 8:

Assume that $u(x)$ is a function that is twice differentiable for which the second derivative $u^{\prime \prime}(x)$ is continuous for all $x \in[0,1]$. Assume further that

$$
u(1)=-1, \quad u(0)=1, \quad u^{\prime}(1)=-2, \quad u^{\prime}(0)=3 .
$$

Use the above information to evaluate

$$
\int_{0}^{1}\left[u(x) u^{\prime \prime}(x)+\left(u^{\prime}(x)\right)^{2}\right] d x .
$$

Svar 8/Answer 8:
A: 0 ,
B: 1 ,
C: 2 ,
D: -1

E: Inget av de givna svaren. / None of the given answers.

