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Symmetric positive definite systems of linear equations

The topic of this talk is solution of massively large systems of linear
equations, where the system matrix is symmetric and positive definite
(SPD).

A matrix A ∈ Rn×n is symmetric if AT = A

and positive definite if xTAx > 0 for all x 6= 0
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Methods for positive definite systems of linear equations

For moderately sized problems, use full matrix representation and
Cholesky factorization.

For large scale problems with possible sparse matrix representation,
use sparse Cholesky factorization, with row and column reordering to
reduce fill in.

For huge problems where even the sparse solvers struggle, use
iterative methods for approximate solutions. The most common one
is the Conjugate Gradient method, the subject of this talk.
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Some properties of the Conjugate Gradient method

For an n × n system, the exact solution is found in n steps. Though
the method is never used in that way. Instead only a fraction of those
iteration are done, to get an approximation of the solution.

The method does not need to know anything about the entries of the
system matrix. It only needs to know how to make a matrix times
vector multiplication.
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The Cayley-Hamilton Theorem

Theorem (Cayley-Hamilton)

Given the characteristic polynomial of a matrix A ∈ Rn×n

p(λ) = det(λI− A) = λn + cn−1λ
n−1 + · · ·+ c2λ

2 + c1λ+ c0 ,

if an equivalent matrix-polynomial is formed with the same coefficients,
and the polynomial is evaluated with the matrix A, the result is the zero
matrix

p(A) = An + cn−1An−1 + · · ·+ c2A2 + c1A + c0I = 0
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A consequence of the Cayley-Hamilton theorem

As a consequence of the Cayley-Hamilton theorem, if A is invertible, then
c0 6= 0, and we can solve for I in the equality

An + cn−1An−1 + · · ·+ c2A2 + c1A + c0I = 0,

followed by multiplication with A−1, gives that A−1 can be expressed as a
degree n − 1 polynomial of A

A−1 = dn−1An−1 + dn−2An−2 + · · ·+ d2A2 + d1A + d0I

If a system of linear equations Ax = b has an invertible coefficient matrix,
its solution can be expressed as x = A−1b, which translates to

x = dn−1An−1b + dn−2An−2b + · · ·+ d2A2b + d1Ab + d0b
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Krylov subspace

A Krylov subspace of order k is defined by

Kk = Span{b,Ab,A2b, . . . ,Ak−1b,Akb}

From the previous discussion it obviously holds that the solution to
Ax = b is in Kn, even for the case when Kn does not span Rn.
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The minimization problem

If A ∈ Rn×n is symmetric and positive definite (SPD) and x,b ∈ Rn, the
solution to Ax = b coincides with the minimum of the function

f (x) =
1

2
xTAx− xTb

Let x∗ be the solution to Ax = b. Then

f (x) =
1

2
((x− x∗) + x∗)TA((x− x∗) + x∗)− ((x− x∗) + x∗)Tb

=
1

2
(x− x∗)TA(x− x∗)︸ ︷︷ ︸

≥ 0

+ f (x∗) ≥ f (x∗)

so the minimal value of f (x) is f (x∗) which is realized for x = x∗.
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Krylov sequence

We will conduct our search for the solution of Ax = b by sequentially
increasing the order of the Krylov subspace used. For each Krylov
subspace, the minimum of f (x) with the constraint x ∈ Kk is found,
forming the Krylov sequence x1, x2, x3, . . . i.e.

xk = arg min
x∈Kk

f (x)

Once xn is reached, the solution is guaranteed to be found, though it may
happen earlier in the sequence than at step n.
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Minimum of f (x) in Kk , first attempt
Let

Mk =
[
b Ab A2b . . . Ak−1b

]
then any vector x ∈ Kk can be expressed as x = Mkc where c ∈ Rk is the
coordinate of x. The function f (x) becomes

f (x) = g(c) =
1

2
cTMT

k AMkc− cTMT
k b

the minimum of which is found by ∇g(c) = 0 giving

MT
k AMkc = MT

k b

Warning

To find c and subsequently xk , we need to solve a system of linear
equations. So to solve a system of linear equations we need solve a system
of linear equations. This is bad!

An idea: What if MT
k AMk was something simple, like a diagonal matrix.

Is it possible to choose another base for Kk to make this happen?
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A special inner product

If A is symmetric positive definite (SPD), we can form an inner product

〈x, y〉 = xTAy

If x and y fulfil xTAy = 0, we say that x and y are A-orthogonal. This
inner product also gives us the A-norm

‖x‖A =
√

xTAx

An identity involving the A-norm

f (x)− f (x∗) =
1

2
‖x− x∗‖2A =

1

2
‖r‖2A−1

where r = b− Ax.
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Minimum of f (x) in Kk , second attempt

Let
Nk =

[
d1 d2 d3 . . . dk

]
where the columns form an A-orthogonal basis for Kk , then any vector
x ∈ Kk can be expressed as x = Nkc where c ∈ Rk is the coordinate of x.
The function f (x) becomes

f (x) = g(c) =
1

2
cTNT

k ANkc− cTNT
k b

where NT
k ANk is a diagonal matrix with diagonal entries dT

i Adi . The
function g(c) can thus be written as

g(c) =
k∑

i=1

1

2
c2i dT

i Adi − cid
T
i b

The entries of ∇g(c) are
∂

∂ci
g(c) = cid

T
i Adi − dT

i b
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Minimum of f (x) in Kk , second attempt, cont

Thus the optimum, where ∇g(c) = 0, is found by

ci =
dT
i b

dT
i Adi

and

xk =
k∑

i=1

cidi = xk−1 + ckdk

The A-orthogonal base di is found using the Gram-Schmidt
orthogonalization process.
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Algorithm 1

q1 := b
d1 := b

c1 :=
dT
1 b

dT
1 Ad1

x1 := c1d1

for k := 2 to n
qk := Aqk−1

dk := qk −
qT
k Ad1

dT
1 Ad1

d1 −
qT
k Ad2

dT
2 Ad2

d2 − · · · −
qT
k Adk−1

dT
k−1Adk−1

dk−1

ck :=
dT
k b

dT
k Adk

xk := xk−1 + ckdk

end for

It looks neat, but the Gram-Schmidt process is as time consuming as
solving systems of linear equations, or worse. So this is also bad!
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The gradient and the residual

From the function f (x) = 1
2xTAx− xTb, we see that

∇f (x) = Ax− b = −r
or

r = b− Ax = −∇f (x)

It is also clear that since xk ∈ Kk it holds that

rk = b− Axk ∈ Kk+1

so one possible use for the residual (i.e the negative gradient) is for
expanding the Krylov subspace for the next iteration. Also note that

rk = b− A(xk−1 + ckdk) = b− Axk−1 − ckAdk

= rk−1 − ckAdk

We use these observations to formulate a slightly modified algorithm
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Algorithm 2

d1 := b

c1 :=
dT
1 b

dT
1 Ad1

x1 := c1d1

r1 := b− c1Ad1

for k := 2 to n

dk := rk−1 −
rTk−1Ad1

dT
1 Ad1

d1 −
rTk−1Ad2

dT
2 Ad2

d2 − · · · −
rTk−1Adk−1

dT
k−1Adk−1

dk−1

ck :=
dT
k b

dT
k Adk

xk := xk−1 + ckdk

rk := rk−1 − ckAdk

end for

Numerical experiments reveal that most of the terms in the calculation of
dk are zero with the exception of the first and last term. If this can be
established in general, the calculation of dk can be radically simplified, and
we can formulate something that is not bad.
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Three useful properties

1. dT
j rk = 0 for all j ≤ k

2. rTj rk = 0 for all j < k

3. rTk Adj = 0 for all j < k

From 3. it is clear that only the first and last term in the Gram-Schmidt
orthoganalization is non-zero.
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Proofs of the properties

1. Proof by induction! Suppose that 1. holds for the case dT
j rk−1 = 0 for all

j ≤ k − 1. Then for j ≤ k − 1 it holds that

dT
j rk = dT

j (rk−1 − ckAdk) = dT
j rk−1 − dT

j Adk = 0− 0 = 0

and for j = k we get
dT
k rk = dT

k (b− Axk) = dT
k b− dT

k A(xk−1 + ckdk)

= dT
k b− dT

k Axk−1 −
dT
k b

dT
k Adk

dT
k Adk = 0

The term dT
k Axk−1 is zero since xk−1 is a linear combination of

d1, . . . ,dk−1 and thus A-orthogonal to dk .

2. From the Gram-Schmidt step it is clear that there are constants ai such that
rj =

∑j+1
i=1 aidi , and since j + 1 ≤ k it follows from 1.

rTk rj =

j+1∑
i=1

ai r
T
k di = 0

3. If the solution is found, rk = 0. Otherwise cj 6= 0 and from 2. we get
rTk Adj = rTk

1
cj

(rj−1 − rj) = 1
cj

(rTk rj−1 − rTk rj) = 0
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Algorithm 3

d1 := b

c1 :=
dT
1 b

dT
1 Ad1

x1 := c1d1

r1 := b− c1Ad1

for k := 2 to n

dk := rk−1 −
rTk−1Adk−1

dT
k−1Adk−1

dk−1

ck :=
dT
k b

dT
k Adk

xk := xk−1 + ckdk

rk := rk−1 − ckAdk

end for
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Algorithm 3 - Discussion

This is starting to look really good, but there still is a major drawback in
this algorithm. The computation intesive task here is to make matrix times
vector multiplication, which is made four times in each iteration. Moreover,
it is the same matrix vector multiplication that is repeated over and over
again. Why not do it once in each iteration and place the result in a vector,
zk := Adk?

Even though the exact solution is found after (at most) n steps in exact
arithmetics, the method is not used in that way in practice. I good
approximation is in general found in much fewer iterations. Also it is
sensitive to rounding errors if too many iterations are used.

The sensitivity to rounding errors go down if some of the quantities are
calculated in a different way.

dT
k b = dT

k (b− Axk−1) = (rk−1 + kdk−1)T rk−1 = rTk−1rk−1

rTk−1Adk−1

dT
k−1Adk−1

=
1

ck−1

rTk−1(rk−2 − rk−1)

dT
k−1Adk−1

=
dT
k−1Adk−1

rTk−2rk−2

−rTk−1rk−1

dT
k−1Adk−1

= −
rTk−1rk−1

rTk−2rk−2

Ove Edlund (LTU) The CG method 2017-04-19 20 / 23



Algorithm 4 - the Conjugate Gradient algorithm,
Hestenes & Stiefel (1952)

d1 := b
r0 := b
z1 := Ad1

c1 :=
rT0 r0
dT
1 z1

x1 := c1d1

r1 := r0 − c1z1
k := 2
while ‖r‖2 > ε‖b‖2 do

dk := rk−1 +
rTk−1rk−1

rTk−2rk−2
dk−1

zk := Adk

ck :=
rTk−1rk−1

dT
k zk

xk := xk−1 + ckdk

rk := rk−1 − ckzk
k := k + 1

end while
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Conjugate Gradient with warm start

If there is an initial guess x0 for the solution, we can find the true solution
by calculating the delta ∆x from the system A∆x = r0, where
r0 = b− Ax0, and forming x∗ = x0 + ∆x. This translates easily to the
algorithm.
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Algorithm 5 - Conjugate Gradient with warm start

r0 := b− Ax0
d1 := r0
z1 := Ad1

c1 :=
rT0 r0
dT
1 z1

x1 := x0 + c1d1

r1 := r0 − c1z1
k := 2
while ‖r‖2 > ε‖b‖2 do

dk := rk−1 +
rTk−1rk−1

rTk−2rk−2
dk−1

zk := Adk

ck :=
rTk−1rk−1

dT
k zk

xk := xk−1 + ckdk

rk := rk−1 − ckzk
k := k + 1

end while
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