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What is a Hilbert space?

An abstract concept with many concrete examples.

• H is a linear space over the real (or complex) numbers.

• The elements of H are called “vectors”.

• The elements of R (or C) are called scalars.

• H is equipped with a scalar product denoted as (u, v).
• The scalar product induces a norm ∥u∥ =

√
(u, u) that makes

H complete.

For a complete axiomatic definition, see any textbook on functional
analysis.



Example 1

The n-dimensional Euclidian space Rn consists of all vectors

x = (x1, x2, . . . , xn) =


x1
x2
...
xn

 .

Rn is a Hilbert space for the scalar product

(x, y) = xT y = x · y =
n∑

i=1
xi yi.

The corresponding norm is

∥x∥ =
√
x2

1 + x2
2 + · · · + x2

n.



Example 2

The space L2(a, b) of real-valued functions on the interval (a, b) such
that ∫ b

a
|f(x)|2 dx < ∞. (1)

is a Hilbert space for the scalar product

(f, g) =
∫ b

a
f(x) g(x) dx.

The corresponding norm is

∥f∥ =
(∫ b

a
|f(x)|2 dx

)1/2

.



Calculus notation
The boundary value problems of physics are usually posed in a
bounded domain in Euclidian space Rn (n = 1, 2 or 3).
Notation:

Ω (bounded domain)

∂Ω (boundary of Ω)

ΓN ∪ ΓD = ∂Ω (partition of boundary)

n̂ (outward unit normal)

x = (x1, . . . , xn) (a point in space)

t (time variable)

Dif = ∂f

∂xi
(partial derivative)

∇f = (D1f, . . . ,Dnf) (gradient)∫
Ω
f dx (“volume” integral)∫

∂Ω
f dS (“surface” integral)



Heat conduction

Let Ω be the region in space occupied by a conducting body (e.g. a
solid cylinder).

u (temperature distribution)

Φ (heat flow vector)

ρ (density)

c (specific heat capacity)

k (thermal conductivity)

f (heat source)

g (heat flux)

Φ and u are related through

Φ = −k∇u (Fourier’s law).

For simplicity we assume that ρ, c and k are given constants.



Conservation of energy

The internal energy of the heated body is

Eint =
∫

Ω
cρ u dx.

For any subdomain V of Ω we have

d

dt
Eint =

∫
V
f dx−

∫
∂V

Φ · n̂ dS.

Differentiating under the integral sign and using the divergence
theorem give

∂

∂t
(cρ u) + ∇ · Φ = f in Ω



Boundary value problem



∂

∂t
(cρ u) + ∇ · Φ = f in Ω (2a)

Φ · n̂ = g on ΓN (2b)

u = 0 on ΓD (2c)

u|t=0 = u0 in Ω (2d)

(2)

Observe that (2b–c) is a so called mixed boundary condition.



Boundary value problem

Alternative formulation:

∂u

∂t
− κ∆u = f̃ in Ω (3a)

∂u

∂n̂
= g̃ on ΓN (3b)

u = 0 on ΓD (3c)

u|t=0 = u0 in Ω (3c)

, (3)

where

κ = k

cρ
, f̃ = 1

cρ
f, g̃ = −1

k
g.

and
∆ = D2

1 + · · · +D2
n (Laplacian).



Energy equality

Let the total “kinetic” energy in Ω be defined as

Ekin =
∫

Ω

1
2
cρ u2dx.

Differentiating with respect to t gives

d

dt
Ekin =

∫
Ω
cρ
∂u

∂t
u dx

= · · · (using (3))

= −
∫

Ω
k |∇u|2 dx+

∫
Ω
fu dx+

∫
ΓN

gu dS



Physical restrictions

If we impose

Ekin < ∞ and
d

dt
Ekin < ∞

we must have∫
Ω

|u|2 dx < ∞ and
∫

Ω
|∇u|2 dx < ∞.

This corresponds to the Hilbert space H1(Ω).



Function spaces

The space of finite “kinetic” energy is the Hilbert space

H = L2(Ω).

The space of finite “kinetic” energy dissipation is

V =
{
v ∈ H1(Ω) : v = 0 on ΓD

}
.

We shall seek our solution u in the space V.

∥u∥H =
(∫

Ω
|u|2 dx

)1/2
, ∥u∥V =

(∫
Ω

|∇u|2 dx
)1/2

.



Weak formulation

From the identity∫
∂Ω
vΦ · n̂ dS =

∫
Ω

Φ · ∇v + (∇ · Φ)v dx.

we deduce the so called weak formulation∫
Ω
cρ
∂u

∂t
v + k∇u · ∇v dx =

∫
Ω
f v dx+

∫
ΓN

g v dS (4)

for any “test function” v in V. Complemented with the initial
condition

u|t=0 = u0.



The Finite Element Method

Three steps:

1. Rephrase the BVP in a weak form.

2. Discretize the weak formulation in a finite dimensional space.

3. Solve the resulting ODE (or system of algebraic equations).

There are many possible discretizations. Which is the most clever
one? The resulting ODE should be simple!



Discretization

A simple way is to divide the domain Ω into a mesh of polyhedra and
use piecewise polynomial functions as basis functions.



Spectral decomposition

Recall the following result from linear algebra.

Theorem (Spectral theorem)
Let A be a real symmetric n× n matrix. Then there exists an orthonormal
basis consisting of eigenvectors of A. Each eigenvalue of A is real.

QTAQ =


λ1

λ2
. . .

λn

 , QTQ = I.

This result generalizes to compact symmetric operators on a Hilbert
space. In particular it can be applied to the operator

−∆−1 : H → V.



Eigenfunctions of the Laplacian (mixed BC)

According to the spectral theorem there exists a sequence of positive
real numbers Σ = (λm)∞

m=1 such that for any λ ∈ Σ, the BVP
−∆ψ = λψ in Ω (5a)
∂ψ

∂n̂
= 0 on ΓN (5b)

ψ = 0 on ΓD (5c).

(5)

has a non-trivial solution ψ in V. Any such function ψ is called an
eigenfunction of −∆.



Spectral decomposition

Assume
0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · .

Then

1. The eigenvalues tend to infinity:

lim
m→∞

λm = ∞.

2. Each eigenspace has finite dimension.

3. There exists a sequence of eigenfunctions (ψm)∞
m=1 that forms

an orthonormal basis in H.

4. The sequence (λ−1/2
m ψm)∞

m=1 is an orthonormal basis in V.



Orthogonality

Orthogonality in H :

(ψm, ψk) =
∫

Ω
ψm ψk dx =

{
1 (m = k)
0 (m ̸= k),

Orthogonality in V :

((ψm, ψk)) =
∫

Ω
∇ψm · ∇ψk dx =

{
λm (m = k)
0 (m ̸= k),

In other words, both “mass” and “stiffness” matrices are diagonal.



Completeness

For any v in H (or V ) the Fourier series

∞∑
m=1

(v, ψm)ψm (6)

converges to v in H (or V ). The numbers

cm = (v, ψm) (m ≥ 1)

are the “Fourier coefficients” of v. Moreover

∥v∥H =
( ∞∑

m=1
c2

m

)1/2

, ∥v∥V =
( ∞∑

m=1
λmc

2
m

)1/2



Riemann–Lebesgue

The Fourier coefficients tend to zero:

lim
m→∞

cm = 0 (v ∈ H)

lim
m→∞

√
λmcm = 0 (v ∈ V )

Moral: The faster they tend to zero, the more regular is the function.



Variational principle for the smallest eigenvalue

We have

λ1 = min
v ̸=0

∫
Ω |∇v|2 dx∫

Ω |v|2 dx
.

This implies the following lower bound for the energy dissipation∫
Ω

|∇v|2 dx ≥ λ1

∫
Ω

|v|2 dx (Friedrichs’ inequality)

valid for all v in V.



Fourier–Ritz–Galerkin approximation

Let us now “solve” the BVP (2).

1. Let (ψm)∞
m=1 be a basis of eigenfunctions of −∆.

2. We seek an approximate solution uN of the form

uN (x, t) =
N∑

m=1
cm(t)ψm(x). (7)

This means that (for fixed t) uN belongs to the N -dimensional
subspace

VN = Span{ψ1, . . . , ψN } ⊂ V.



Discretized weak formulation

Inserting (7) into the weak formulation (4) gives

∑
i

∫
Ω
cρ
dci

dt
ψi v + ci k∇ψi · ∇v dx =

∫
Ω
fv dx+

∫
ΓN

gv dS

for all v in VN . For brevity we write the right-hand side as

⟨F (t), v⟩ =
∫

Ω
f(x, t)v(x) dx+

∫
ΓN

g(x, t)v(x) dS

and consider F (t) as an element in V ′, i.e. a bounded linear
functional.



ODE

Taking v = ψm gives the uncoupled linear system

cρ
dcm

dt
+ kλm cm = Fm (1 ≤ m ≤ N), (8)

where
Fm(t) = ⟨F (t), ψm⟩.

This system can be easily integrated

cm(t) = e−κλmt
(
cm(0) + 1

cρ

∫ t

0
eκλmsFm(s) ds

)
, (9)

where κ = k/(cρ) and cm(0) are the Fourier coefficients of u0.



Summary of the method

1. We derive the weak formulation of our BVP.

2. We discretize using a finite number of the eigenfunctions
(ψm)N

m=1 that “diagonalize” the operator −∆ in a finite
dimensional space.

3. We find an approximate solution

uN (x, t) =
N∑

m=1
cm(t)ψm(x)

by solving an uncoupled linear ODE (easy!).

Does the approximate solution uN converge to an exact solution u?



Energy equality

Each approximate solution satisfies an energy equality:

d

dt

∫
Ω

1
2
cρ u2

Ndx+
∫

Ω
k |∇uN |2 dx =

∫
Ω
fuN dx+

∫
ΓN

guN dS.

From this identity we can derive various estimates.



Energy estimates

For any T > 0 we have

∥uN (T )∥2
H ≤ e−κλ1T ∥u0∥2

H (10)

+ 1
cρk

∫ T

0
eκλ1(t−T ) ∥F∥2

V ′ dt

k ∥uN ∥2
L2(0,T ;V ) ≤ cρ ∥u0∥2

H + 1
k

∥F∥2
L2(0,T ;V ′) (11)

(cρ)2 ∥∂uN/∂t∥2
L2(0,T ;V ′) ≤ 2

(
∥F∥2

L2(0,T ;V ′) + k2 ∥uN ∥2
L2(0,T ;V )

)
.

(12)

This allows us to pass to the limit as N → ∞.



Existence and uniqueness of weak solutions

Theorem
For any

u0 ∈ H, f ∈ L2(0, T ;H), g ∈ L2(0, T ;L2(ΓN ))

there exists a weak solution u of the BVP (2) in the class

u ∈ L2(0, T ;V ), ∂u

∂t
∈ L2(0, T ;V ′), u|t=0 = u0

that satisfies

d

dt

∫
Ω
cρ u v dx+

∫
Ω
k∇u · ∇v dx =

∫
Ω
fv dx+

∫
ΓN

gv dS (13)

for all test functions v in V. Moreover u is unique (in its class!) and
depends continuously on boundary and initial data.



Comments

1. The BVP (2) has all the characteristics of a good (well-posed)
mathematical model (for T > 0!).

2. Are all weak solutions acceptable solutions?

3. When are solutions smooth? Two times differentiable? Three
times differentiable?

4. Can we estimate the approximation errors ∥u− uN ∥H ,
∥u− uN ∥V ? Rate of convergence?

5. Qualitative properties: smoothing of initial data, infinite speed of
propagation, stationary solutions, maximum principle



Simple example

Let us consider heat conduction in a thin rod:

Ω = {x : 0 < x < L}, ΓN = {x = 0}, ΓD = {x = L}.

Then (2) becomes

cρ
∂u

∂t
− k

∂2u

∂x2 = f in Ω (14a)

−k ∂u
∂x

∣∣∣∣
x=0

= g on ΓN (14b)

u|x=L = 0 on ΓD (14c)

u|t=0 = u0 in Ω (14c)

(14)



Weak formulation

Find u (in the admissible class) such that

u|t=0 = u0

and ∫ L

0
cρ
∂u

∂t
v + k

∂u

∂x

dv

dx
dx =

∫ L

0
f v dx− g(t)v(0) (15)

for all v in
V =

{
v ∈ H1(0, L) : v(L) = 0

}
.



Eigenfunctions


− d2

dx2ψ = λψ in Ω (16a)

dψ

dx
(0) = 0 on ΓN (16b)

ψ(L) = 0 on ΓD (16c).

(16)

The general solution of (16a) is

ψ(x) = A cos(
√
λx) +B sin(

√
λx).

Taking (16b–c) into account gives
λm = π2

L2 (m− 1/2)2

ψm(x) =
√

2
L

cos(
√
λm x)

(m ≥ 1) (17)



Plot of eigenfunctions

L

−

√

2

L

0

√

2

L

ψ1

ψ2

ψ3

ψ4



ODE

Assuming the Fourier expansions

f(x, t) =
∞∑

m=1
fm(t)ψm(x)

u0(x) =
∞∑

m=1
cm(0)ψm(x)

we obtain the ODE

cρ
dcm

dt
+ kλm cm = fm −

√
2
L
g (m ≥ 1).



Solution

Thus, the solution of BVP (14) is given by

u(x, t) =
∞∑

m=1
cm(t)ψm(x)

where

cm(t) = e−κλmt

(
cm(0) + 1

cρ

∫ t

0
eκλms

(
fm(s) −

√
2
L
g(s)

)
ds

)
,

and κ = k/(cρ).



Numerical solutions

Set
L = 2, ρ = c = k = 1.

Example 1: Evolution of initial data
Let u0 be a given a function and set f = g = 0.

Example 2: Stationary heat source
Let f = f(x) be a given a function and set u0 = g = 0.

Example 3: Prescribed heat flux at x = 0
Let g = g(t) be a given a function and set u0 = f = 0.



Continuum mechanics
The Fourier–Ritz–Galerkin method can be applied to BVPs for other
PDEs such as the wave equation, the Schrödinger equation or

Navier-Stokes system



ρ

(
∂u

∂t
+ (u · ∇) u

)
= ∇ · σ + ρf (momentum equation)

∂ρ

∂t
+ ∇ · (ρu) = 0 (mass conservation)

σ = (−p+ λ∇ · u) I + 2µ e(∇u) (constitutive law I)

ρ = f(p) (constitutive law II)

Reynolds equation

∂

∂t
(hρ) + ∇ ·

(
−h3ρ

12µ
∇p+ hρv

)
= 0.
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THE END


