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Abstract

Brownian motion on a smash line algebra (a smash or braided version of the algebra
resulting by tensoring the real line and the generalized paragrassmann line algebras),
is constructed by means of its Hopf algebraic structure. Further, statistical moments,
non stationary generalizations and its diffusion limit are also studied. The ensuing
diffusion equation possesses triangular matrix realizations.

1 Introduction

The study of random walks and diffusions on generalized spaces is an active field of re-
search. The formulation of the related problems is carried out mostly in an algebraic
manner that employs commuting and/or non-commuting algebras with rich structures
such as bialgebras and Hopf algebras with possible braiding or smashing defined among
them cf. [1, 2, 3]. Here we construct and study further such a Brownian motion on a
smash line algebra. Our algebraic model for the braided/smash line is the merging of the
∗-Hopf algebra of formal power series A = C[[x]] on R, with the braided ∗-Hopf algebra
B = C[ξ]/ξN , of (N −1)-degree polynomials generated by the N -potent variable ξ (N = 2
gives us the standard superspace). Technically this merging is the cross-product (also
known as smash-product) of A, B algebras. It imposes a definite braiding rule between
A, B that is naturally interpreted as non commutativity among the increments (steps) of
the underlying random walk. Once a natural positive definite functional has been chosen
on the smash line we compute the values of the statistical moments of any order for our
(x, ξ) random variables. Introducing an appropriate limiting procedure we construct the
(pseudo)differential equation of the diffusion on the smash line. This is further extended
to non stationary random walks that incorporate Hamiltonian dynamics into the diffu-
sions processes. Additionally a matrix realizations of the ξ-generators of the B algebra
and of their differential are employed to cast the resulting diffusion equation into the form
of a matrix-valued (ordinary)differential equation that gives rise to a system of coupled
diffusion equations.

2 Smash line algebra

Let us consider two complex associative algebras: A = R[[x]], the algebra of real formal
power series in one variable generated by the element x with

{
1, x, x2, . . .

}
as a linear
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basis, and B = R[ξ]/ξN the algebra of polynomials in one variable of degree N − 1,
generated by the element ξ with a basis

{
1, ξ, ξ2, . . . ξN−1

}
and ξN = 0. Both these

algebras are equipped with a Hopf algebra structure. Algebras A = A(µA,∆A, uA, εA),
B = B(µB,∆B, uB, εB) are commuting, cocommuting coassociative algebras with products
µA, µB, coproducts, ∆A, ∆B, units uA, uB, and counits εA, εB respectively defined as
µA(x⊗y) = xy, µB(ξ⊗η) = ξη, uA(c) = c1A, uB(c) = c1B, c ∈ C,∆A(x) = x⊗1A+1A⊗x,
∆B(ξ) = ξ⊗1B+1B⊗ξ, εA(x) = 0, εA(1A) = 1, εB(ξ) = 0, and εB(1B) = 1; for all x, y ∈ A,
ξ, η ∈ B, where 1A, 1B are the identity elements of A and B respectively. Moreover a trivial
braiding or twist map τ is defined in A as τ(x ⊗ y) = y ⊗ x while in B a braiding ϕ ia
defined as ϕ(ξ⊗η) = qη⊗ξ where q = e2πiN . Random walks leading to diffusion equations
have been carried out independently in A [4] and B [5, 6].

We shall now consider the case of performing a random walk on what we shall call a
smash line which arises by first merging of the two algebras above. The merging of A
and B as Ω = A ⊗ B where x is embedded as x ⊗ 1A and ξ as 1B ⊗ ξ, will eventually
be formulated as an associative smash product algebra Ω which will also have a smash
coproduct algebra structure. Explicitly the maps of product , coproduct, unit and counit
in Ω are given by

µΩ ≡ (µA ⊗ µB) ◦ (idA ⊗ τ ⊗ idB), ∆Ω ≡ (idA ⊗ τ ⊗ idB) ◦ (∆A ⊗∆B),

uΩ(1) = 1Ω, εΩ ≡ εA ⊗ εB, with 1Ω = 1A ⊗ 1B.
(1)

We can now give a smash product and coproduct algebra structure [3, 8, 9] to Ω by
means of the braiding map Ψ : Ω⊗ Ω → Ω⊗ Ω where

Ψ(x⊗ 1B ⊗ 1A ⊗ ξ) = Q(1A ⊗ ξ ⊗ x⊗ 1B), (Q ∈ R),

Ψ(1A ⊗ ξ ⊗ 1A ⊗ η) = q(1A ⊗ η ⊗ 1A ⊗ ξ),

Ψ(x⊗ 1B ⊗ x ′ ⊗ ξ) = (x
′ ⊗ 1B ⊗ x⊗ 1B),

with product µΩ2 = (µΩ⊗µΩ)◦(idΩ⊗Ψ⊗idΩ), coproduct ∆Ω2 ≡ (idΩ⊗Ψ⊗idΩ)◦(∆Ω⊗∆Ω),
unit and counit as uΩ2(1) = 1Ω2 , εΩ2 ≡ εΩ ⊗ εΩ. This product extended to Ωn by the
relation

µΩn = (µΩn−1⊗µΩ)◦
2n−3∏
k=1

◦
(
id⊗

2n−2−k

Ω ⊗Ψ⊗ idkΩ

)

provides the algebra of increments of the random walk on the smash line i.e

xixj = xjxi, ∀ i, j, ξiξj = qξjξi, xiξj = Qξjxi, for i > j, (2)

where the indices above indicate the position of the embeddings of x and ξ in the respective
spaces (e.g. ξ2ξ1 = (1A⊗1B⊗1A⊗ξ)(1A⊗ξ⊗1A⊗1B) = q(1A⊗ξ⊗1A⊗1B)(1A⊗1B⊗
1A ⊗ ξ) = qξ1ξ2). In addition using eqs. (1) and (2), the n-th fold coproduct on xk ⊗ ξl

∈ Ω is given by:

∆n−1
Ω

(
xk ⊗ ξl

)
=

∑
i1+···+in=k

∑
j1+···+jn=k

(
k

in · · · in

) [
l

jn · · · jn

]
q

× xi1 ⊗ ξj1 ⊗ · · · ⊗ xin ⊗ ξjn ,

(3)

where ingeneral ∆n =
(
∆⊗ id⊗n−1

)
◦∆n−1 =

(
id⊗n−1 ⊗∆

)
◦∆n−1, and the q-binomial

coefficient is defined as
[

m
kl

]
q

= [m]q !
[k]q ![l]q ! .
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3 Diffusion equation

Let φ be a linear functional from our algebra to C, which corresponds to probability
density element ρ satisfying the following relations:

φ(f) = 〈f〉φ =
∫

ρf = 〈φ, f〉 ∈ C.

It is assumed that φ lives in the dual space of Ω where the product is defined to be
the usual convolution operation between probability density functions, by means of the
following relations:

φ∗n(f) = 〈φ⊗n
,∆n−1(f)〉,

where ∆n ≡ ∆nΩ . If this is interpreted as the state of probability function of the random
walk after n steps, then the general state after an n-step walk evaluated on a general
observable element

f(x, ξ) =
∑
k,l∈Z+

dklx
kξl (4)

of Ω reads,

φ∗nf(x, ξ)) = (φ∗φ∗· · ·∗φ)(f(x, ξ)) = (
φ⊗n)

∆n−1(f(x, ξ)). (5)

By virtue of eq. (3), (5) and making the choice ρ(x, ξ) = ρ1(x)ρ2(ξ) where ρ1(x) =
p1δ(x−a)+(1−p1)δ(x+a), ρ2(ξ) = p2δ(ξ− θ)+(1−p2)δ(ξ+ θ) for the density functions
of the random walk where as usual p1 and p2 are chosen probabilities, we conclude that
with respect to the xξ-monomials

〈xk ⊗ ξl〉φ∗n =
∑

i1+···+in=k

∑
j1+···+jn=k

(
k

in · · · in

) [
l

jn · · · jn

]
q

×
n∏
l=1

< xil ⊗ ξjl >φ,

(6)

where in general

〈xi ⊗ ξj〉φ =
[
p1e

aDx + (1− p1)e−aDx
]

×
[
p2e

θDξ
q + (1− p2)e

−θDξ
q

]
|x,ξ=0(xiξj) = φx(xi)φξ

(
ξj

)
.

Let us now compute the system after n steps and its limit as n → ∞. Using Taylor’s
expansion, the form φ∗n for the case of monomials of xm, ξt and xkξl reads as follows:

φ∗n = φ∗n
x φ∗n

ξ =
[
εΩ + 2a(p1 − 1/2)Dx + a2/2!D2

x + · · · ]n
× [

εΩ + 2θ(p2 − 1/2)Dξ + θ2/[2]q!D2
ξ + · · · ]n |x,ξ=0

(7)

and where Dx = ∂/∂x, Dξf(ξ) =
f(ξ)−f(ξq)

(1−q)ξ . Following [4, 5] we substitute 2a(p1 − 1/2) =
c1t
n , 2θ(p2 − 1/2) = c2t

n , a2/2 = α1t
n , θ2/[2]q = α2t

n and then we take the limit n → ∞
with t, c1, c2, α1, α2 fixed and t = nδ, δ being the size of the step in time, to obtain the
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continue limit of random walk where the steps are viewed ([4, 5]) as steps in time. This
yields

φ∞(f) =
(
ec1tDx+α1tD2

x+c2tDξ+α2tD2
ξf

)
|x,ξ=0, (8)

where the limit (1 + z/n)n → ez for n → ∞ has been used. To obtain the diffusion
equation we have, that for a general f of the form (4),∫

(∂tρ∞) f = ∂tφ
∞(f) = φ∞ ((

c1Dx + α1D
2
x + c2Dξ + α2D

2
ξ

)
f
)

=
∫ ((−c1Dx + α1D

2
x + c2D

∗
ξ + α2D

∗2
ξ

)
ρ∞

)
f

(9)

which implies that

∂tρ
∞ =

(−c1Dx + α1D
2
x + c2D

∗
ξ + α2D

∗2
ξ

)
ρ∞ (10)

with solution:

ρ∞1 (a) = (4πα1t)
−1 e

− (a−c1t)2

4α1t ,

ρ∞2 (θ) =
N−1∑
k=0

θN−1−k
l<k/2∑
l=0

(c2t)k−l (α2/c2)
l [k]q!

l!(k − 2l)!
.

(11)

4 Non stationary case

Consider the Hamiltonian evolution of a quantity F depending in general on the phase
space variables x, p, ξ, pξ where we have assumed that ξ2 = 0 :

{F,H} = ∂F

∂x

∂H

∂p
−∂F

∂p

∂H

∂x
+(−1)ε

(
∂F

∂ξ

∂H

∂pξ
+

∂F

∂pξ

∂H

∂ξ
+

)
, (12)

where ε = 0, 1 is the degree of F . We can defined, using t as a time parameter, the action
of etVH on x0 is given by etVHx0 = xt, and similarly etVH ξ0 = ξt, where the action of VH
isgenerally given by

VH(F ) =
∂H

∂p

∂F

∂x
− ∂H

∂x

∂F

∂p
+(−1)ε

(
∂H

∂pξ

∂F

∂ξ
− ∂H

∂ξ

∂F

∂pξ

)
.

We can now evaluate φ
(
xkt ξ

l
t

)
using the choice of ρ as mentioned underneath rela-

tion (5):

φ
(
xkt ξ

l
t

)
=

[
p1e

atDx + (1− p1)ea
′
tDx

]

×
[
p2e

θtDξ + (1− p2)eθ
′
tDξ

]
|x,ξ=0

xk0ξ
l
0 = φt

(
xk0ξ

l
0

)
,

(13)

where we have set at = a − tλ, a′t = −a − tλ, θt = θ − tλ̃ and θ′t = −θ − tλ̃, λ = ∂H
∂p ,

λ̃ = − ∂H∂pξ . We can now expand the exponential in the above relation and after some
algebra which involves taking the limit n → ∞ we find that

φ∞
t (f) =

[
e(c1−λd1)tDx+α1tD2

x+(c2−λ̃d2)tDξ

]
(f)|x,ξ=0

=
(
etKf

)
|x,ξ=0

=
∫

ρ∞f = 〈ρ∞, f〉,
(14)
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where we have implemented the following substitutions 2a(p1 − 1/2) = c1t
n , tλ = λd1tn ,

a2

2 = α1t
n , 2θ(p2 − 1/2) = c2t

n , tλ̃ = λ̃d2tn , (d1, d2, real constants).
Then the diffusion equation reads:

∂tρ
∞ =

(
−c1Dx + α1D

2
x + c2D

∗
ξ + λDx − λ̃D∗

ξ

)
ρ∞, (15)

where we have set d1 = d2 = 1.

5 Matrix realization

We will now employ the N -dimensional matrix representations of ξ, as (ξ)i,i+1 = 1, Dξ as
(Dξ)i,i+1 = {i} and D∗

ξ as (D
∗
ξ )i,i+1 = {i}eω−1{i}, i = 1, . . . , N−1 and all other entries zero

and where {x} = 1−ωx

1−ω , ω = e2iπ/N , that they have explicitly been constructed in [10, 7],
to get a matrix realization for the stationary diffusion equation (10). In particular for
the matrix representation of D∗

ξ (t) one should take in to account [5] where the above has
been obtained via the use of anyonic Leibnitz rule Dξ(fg) = (Dξf)g + Lqf(Dξg) and the
property that D∗

ξ = −DξLq−1 . Using this realization we can write (10) as ∂tρ
∞ = Hρ∞,

where

H =




Hx c2λ1 α2λ1λ2 0 0
0 Hx c2λ2 α2λ2λ3 0
...

...
...

...
...

0 0 0 Hx c2λN−1

0 0 0 0 Hx




,

with λi = {i}eω−1{i}, i = 1, · · · , N − 1, and Hx = −c1Dx + α1D
2
x. Expanding a generic

ρ∞ as:

ρ∞(x, ξ, t) =
N−1∑
i=0

∞∑
j=0

ρijx
jξi =

N−1∑
i=0

ρi(x)ξi =




ρ0(x) 0 0 0
ρ1(x) ρ0(x) 0 0
...

...
...

...
ρN−1(x) ρN−2(x) . . . ρ0(x)


 ,

yields the following general system of differential equations to be solved:

∂ρk
∂t

= Hxρk+c2λk+1ρk+1+α2λk+1λk+2ρk+2 for k = 0, 1, . . . , N−1. (16)

6 Conclusions

We have constructed an algebraic random walk and its associated limit governed by a
diffusion equation on a space with real and paragrassmann components. The construction
is based on the smashing of the algebra of functions of the underlined space. The algebraic
approach is flexible and allows to determine statistical moments of the random walk and
matrix realizations of its diffusion limit. Details of the smash line Brownian motion as well
as extensions to random walks and diffusions on operator algebras of Quantum Mechanics
can be found elsewhere [11, 12].
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