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Abstract

After giving a brief account of the Jacobi last multiplier for ordinary differential equa-
tions and its known relationship with Lie symmetries, we present a novel application
which exploits the Jacobi last multiplier to the purpose of finding Lie symmetries of
first-order systems. Several illustrative examples are given.

1 Introduction

The late Summer of 1843 sees Carl Gustav Jacob Jacobi travelling south: his final des-
tination is Italy. The poor condition of his health has forced him to make this journey
leaving behind his beloved family. Although his health seems to improve thanks maybe to
the better climate, Jacobi is not only missing his family but also finds himself longing to
discuss mathematics with Italian mathematicians [32]. One occasion that presents itself
is the Congress of the Italian Scientists [1] in Lucca. Jacobi wrote to his wife that he had
the audacity to give an impromptu lecture in French because he thought that it was a
question of courtesy to make a communication of some sort, but he had neither the time
nor the peace of mind necessary to write anything [32]. The summary of that lecture was
published a year later in an Italian journal1. Its title in English is “On the principle of
the last multiplier and its use as a new broad principle of mechanics” [25]. This is the
first appearance in the literature of a new mathematical object which is nowadays known
as the Jacobi last multiplier2. The really extensive work on the last multiplier was then
published in Latin in Crelle’s journal as a very long article divided into three parts ([26],
[27]) and filled with various examples, e.g. his problem of three bodies which attract each
other with forces proportional to the cube of the inverse of their distance and move on a
line [46]. Note that in his lectures on dynamics [28] – published posthumously – which
he had delivered in the Winter of 1842-1843 at the University of Berlin several chapters
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1That journal was published in Rome and terminated in 1868.
2Actually, during his journey with Bessel to England in 1842 [32], Jacobi went to Manchester and at a

meeting of the British Association for the Advancement of Science presented a communication in English
entitled “On a new general principle of analytical mechanics” which in the same year was published in
French by the Paris Academy [24]. In that paper he announced his new principle of Mechanics and
mentioned a last multiplier without any mathematical detail contrarily to what is reported in [25].
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are devoted to the last multiplier and its applications in Classical Mechanics. After Ja-
cobi’s untimely death in 1851 his last multiplier had been used to find first integrals, e.g.
for a certain second-order ordinary differential equation [34], but it was when Sophus Lie
found a link with the symmetries that bear his name [36] that many authors studied the
Jacobi last multiplier in different contexts: from searching for its generalization [13]; to
exploiting all the possible relationships it has with first integrals and Lie symmetries ([9],
[56]); from determining a Lagrangian formulation for systems of second-order ordinary
differential equations ([58], [38], [29]); to searching for steady compressible flows of per-
fect gases [51] or applying it to the statistical mechanics of dissipative systems [14]; from
identifying the time-dependent probability density as its analogue in Quantum Mechanics
[33]; to the ubiquitous relationship between inverse Jacobi last multiplier and limit cycles
[2]; from finding first integrals of various systems ([18], [54], [50]); to deducing nonlocal
Lie symmetries [48].

In the present paper we show a novel application of the Jacobi last multiplier in the
quest for Lie symmetries admitted by ordinary differential equations.

Lie group analysis is indeed the most powerful tool to find the general solution of
ordinary differential equations. Any known technique of integration3 can be shown to be a
particular case of a general method of integration based on the derivation of the continuous
group of symmetries admitted by the differential equation, i.e. the Lie symmetry algebra,
which can be easily derived by a straightforward although lengthy procedure. As computer
algebra software becomes widely used, the integration of systems of ordinary differential
equations by means of Lie group analysis is becoming easier to perform. A major drawback
of Lie’s method is that it is useless when applied to systems of M first-order equations4,
because they admit an infinite number of symmetries, and there is no systematic way
to find even an one-dimensional Lie symmetry algebra, apart from trivial groups like
translations in time admitted by autonomous systems. One may try to derive an admitted
M -dimensional solvable Lie symmetry algebra by making an ansatz on the form of its
generators, but when successful (rarely!) it is just a lucky guess.
However, in [43] we have remarked that any system of n first-order equations could be
transformed into an equivalent system where at least one of the equations is of second-
order. Then the admitted Lie symmetry algebra is no longer infinite-dimensional and
nontrivial symmetries of the original system can be retrieved [43]. This idea has been
successfully applied in several instances ([43], [57], [47], [44], [49], [35], [45], [15], [53]).
Also in [39] we have shown that first integrals can be obtained by Lie group analysis
even if the system under study does not come from a variational problem, i.e. without
making use of Noether’s theorem [40]. The key is to solve the linear parabolic determining
equation which comes after the reduction method has been applied; the characteristic
curves correspond to first integrals. We have used this method for finding first integrals
in [39], [44] and [35].

3We mean those taught in most undergraduate courses on ordinary differential equations.
4Any undergraduate science/engineering student knows that an nth-order ordinary differential equation

can be transformed into an equivalent system of n first-order equations. Less well-known to students but
common knowledge among experts in Lie group analysis is the dramatic consequence that that transforma-
tion has on the dimension of the admitted Lie symmetry algebra. In fact, while the maximal Lie symmetry
algebra admitted by a single nth-order equation is finite [16], the dimension of the Lie symmetry algebra
admitted by a system of n first-order equations is infinite.
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The outline of the present paper is as follows. In Section 2 we recall the classical
“old” relationship between the Jacobi last multiplier and Lie symmetries and provide an
expository example of a linearizable equation which yields a “plenitude” of first integrals.
In Section 3 we present a new application of the Jacobi last multiplier in order to raise
the order of the system under study and thereby allowing for more Lie symmetries to be
found: several examples are given.

2 Jacobi last multiplier and Lie symmetries

The method of the Jacobi last multiplier ([25], [26], [27], [28]) provides a means to deter-
mine all the solutions of the partial differential equation

Af =

n
∑

i=1

ai(x1, . . . , xn)
∂f

∂xi
= 0 (2.1)

or its equivalent associated Lagrange’s system

dx1

a1

=
dx2

a2

= . . . =
dxn

an
. (2.2)

In fact, if one knows the Jacobi last multiplier and all but one of the solutions, then the
last solution can be obtained by a quadrature. The Jacobi last multiplier, M , is given by

∂(f, ω1, ω2, . . . , ωn−1)

∂(x1, x2, . . . , xn)
= MAf, (2.3)

where

∂(f, ω1, ω2, . . . , ωn−1)

∂(x1, x2, . . . , xn)
= det





















∂f

∂x1

· · ·
∂f

∂xn
∂ω1

∂x1

∂ω1

∂xn
...

...
∂ωn−1

∂x1

· · ·
∂ωn−1

∂xn





















= 0 (2.4)

and ω1, . . . , ωn−1 are n − 1 solutions of (2.1) or, equivalently, first integrals of (2.2) in-
dependent of each other. This means that M is a function of the variables (x1, . . . , xn)
and depends on the chosen n − 1 solutions, in the sense that it varies as they vary. The
essential properties of the Jacobi last multiplier are:

a) If one selects a different set of n − 1 independent solutions, η1, . . . , ηn−1, of equation
(2.1), then the corresponding last multiplier N is linked to M by the relationship:

N = M
∂(η1, . . . , ηn−1)

∂(ω1, . . . , ωn−1)
.

b) Given a nonsingular transformation of variables,

τ : (x1, x2, . . . , xn) −→ (x′

1, x
′

2, . . . , x
′

n),
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then the last multiplier M ′ of A′F = 0 is given by:

M ′ = M
∂(x′

1, x
′

2, . . . , x
′

n)

∂(x1, x2, . . . , xn)
,

where M obviously comes from the n − 1 solutions of AF = 0 which correspond to
those chosen for A′F = 0 through the inverse transformation τ−1.

c) One can prove that each multiplier M is a solution of the following linear partial
differential equation:

n
∑

i=1

∂(Mai)

∂xi
= 0;

vice versa every solution M of this equation is a Jacobi last multiplier.

d) If one knows two Jacobi last multipliers, M1 and M2, of equation (2.1), then their
ratio is a solution ω of (2.1) or, equivalently, a first integral of (2.2). Naturally the
ratio may be quite trivial, namely a constant. Vice versa the product of a multiplier
M1 times any solution ω yields another last multiplier M2 = M1ω.

In its original formulation the method of the Jacobi last multiplier required almost com-
plete knowledge of the system, (2.1) or (2.2), under consideration. Since the existence
of a solution/first integral is consequent upon the existence of symmetry, an alternate
formulation in terms of symmetries was provided by Lie [37]. A clear treatment of the
formulation in terms of solutions/first integrals and symmetries is given by Bianchi [3]. If
we know n − 1 symmetries of (2.1)/(2.2), say

Γi =

n
∑

j=1

ξij(x1, . . . , xn)∂xj
, i = 1, n − 1, (2.5)

Jacobi’s last multiplier is given by M = ∆−1, provided that ∆ 6= 0, where

∆ = det











a1 · · · an

ξ1,1 ξ1,n
...

...
ξn−1,1 · · · ξn−1,n











. (2.6)

There is an obvious corollary to the results of Jacobi mentioned above. In the case that
there exists a constant multiplier, the determinant is a first integral. This result is po-
tentially very useful in the search for first integrals of systems of ordinary differential
equations. The differential equation to be solved for the Jacobi last multiplier is

d log(M)

dt
+

n
∑

i=1

∂Wi

∂wi
= 0, (2.7)

where M is the multiplier and the equation of motion has components

ẇi = Wi(w1, . . . , wn) (2.8)
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in which overdot denotes differentiation with respect to an independent variable, say t.
Consequently, if each component of the vector field of the equation of motion is missing
the variable associated with that component, i.e., ∂Wi/∂wi = 0, the last multiplier is a
constant. This feature was put to good use with the Euler-Poinsot system [48] and the
Kepler problem [50]. Note that equation (2.7) implies that the Jacobi last multiplier, M ,
is equal to

M = exp

(

−

∫ n
∑

i=1

∂Wi

∂wi
dt

)

. (2.9)

2.1 A linearizable equation given by Painlevé

We consider a second-order ordinary differential equation which was given by Painlevé [52]
and cited by Ince [23] as an example of an equation which does not possess the Painlevé
property5:

w′′ = w′2

(

w
2k2w2 − 1 − k2

(1 − w2)(1 − k2w2)
−

1

λ
√

(1 − w2)(1 − k2w2)

)

. (2.10)

Recently a modified version of equation (2.10) was considered by Calogero [6] to show that
it features many periodic solutions and that all of its nonsingular solutions are periodic.
After a cosmetic rescaling, u = w/λ, here we show that in the case when k = 1 (also
considered in [6]) equation (2.10), i.e.,

u′′ = u′2 2u + 1

u2 − λ2
, (2.11)

admits an eight-dimensional Lie symmetry algebra6 generated by the following eight op-
erators:

X1 = −

(

u + λ

u − λ

)
1

2λ

[x∂x + (λ2 − u2) ∂u]

X2 = −

(

u + λ

u − λ

)
1

2λ

∂x

X3 =

(

u − λ

u + λ

)
1

2λ

(u2 − λ2)x∂u

X4 =

(

u − λ

u + λ

)
1

2λ

(u2 − λ2) ∂u (2.12)

X5 = −x2∂x + x(u2 − λ2) ∂u

X6 = (u2 − λ2) ∂u

X7 = ∂x

X8 = x∂x

5Here prime denotes differentiation with respect to x.
6This symmetry algebra is isomorphic to sl(3, IR) ([37], [16]) .
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which means that equation (2.11) is linearizable [37] by means of a point transformation7.
In order to find the linearizing transformation we have to look for a two-dimensional abelian
intransitive subalgebra and, following Lie’s classification of two-dimensional algebras in the
real plane [37], we have to transform the subalgebra into the canonical form

∂ũ, x̃∂ũ (2.13)

with ũ and x̃ the new dependent and independent variables, respectively. We find that
one such subalgebra is that generated by X2 and X7. Then it is easy to derive that

x̃ =

(

u − λ

u + λ

)
1

2λ

, ũ = x

(

u − λ

u + λ

)
1

2λ

, (2.14)

and equation (2.11) becomes

d2ũ

dx̃2
= 0. (2.15)

The general solution is trivially ũ = a1x̃ + a2, with a1 and a2 arbitrary constants, and
finally thanks to transformation (2.14) the general solution of equation (2.11) is:

u = λ
(x − a1)

2λ + a2λ
2

(x − a1)2λ − a2λ
2

. (2.16)

In order to apply the method of the Jacobi last multiplier equation (2.11) is written as
the system of two autonomous first-order ordinary differential equations:

u′ = ux,

u′

x = u2
x

2u + 1

u2 − λ2
(2.17)

with ux a new obvious dependent variable. Of course we have trivially to construct the
first prolongations of the generators (2.12) in order for each of them to generate a Lie
symmetry of system (2.17). For example the first prolongation of X1 is

X1
1

= X1 +

(

u + λ

u − λ

)
1

2λ

ux
xux + 2λ2u − 2u3

λ2 − u2
∂ux . (2.18)

The Jacobi last multiplier of system (2.17) has to satisfy equation (2.7), i.e.,

d log(M)

dx
= 2ux

2u + 1

λ2 − u2
. (2.19)

Note that, although system (2.17) is autonomous, the dependent variable x appears in
nearly all the generators (2.12). This means that the corresponding matrices as given in

7We do not know if the linear nature of equation (2.11) has been already shown elsewhere. Here our
goal is to show that the known relationship between the Jacobi last multiplier and Lie symmetries yields
first integrals of equation (2.11).
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(2.6) must have three columns and consequently there are twenty-eight possible determi-
nants to be calculated. By way of illustration the matrix that we obtain with the choice
of X1

1
and X3

1
is

C13 =

















1 ux u2
x

2u + 1

u2 − λ2

−

(

u + λ

u − λ

)
1

2λ

x

(

u + λ

u − λ

)
1

2λ

(u2 − λ2)

(

u + λ

u − λ

)
1

2λ

ux
xux + 2λ2u − 2u3

λ2 − u2

0

(

u − λ

u + λ

)
1

2λ

(u2 − λ2)x

(

u − λ

u + λ

)
1

2λ

(2xuux + xux + u2 − λ2)

















.

(2.20)

First integrals of system (2.17) are then obviously obtained by taking any ratio of two
determinants which are not null. With the use of Maple 9 it is easy to find that the
determinants which differ from zero are the following8:

∆13 = (u2 − λ2 + xux)2

∆14 = (u2 − λ2 + xux)ux

∆15 =

(

u + λ

u − λ

)
1

2λ (u2 − λ2 + xux)3

u2 − λ2

∆17 =

(

u + λ

u − λ

)
1

2λ u2
x(u2 − λ2 + xux)

λ2 − u2

∆18 =

(

u + λ

u − λ

)
1

2λ ux(u2 − λ2 + xux)2

λ2 − u2

∆23 = ∆14

∆24 = u2
x

∆25 = ∆18

∆27 =

(

u + λ

u − λ

)
1

2λ u3
x

λ2 − u2

∆28 = ∆17

∆34 = −

(

u − λ

u + λ

)
1

λ

(λ2 − u2)2

∆36 =

(

u − λ

u + λ

)
1

2λ

(λ2 − u2)(u2 − λ2 + xux)

∆37 = −

(

u − λ

u + λ

)
1

2λ

(λ2 − u2)ux

∆45 = −

(

u − λ

u + λ

)
1

2λ
(

(λ2 − u2)xux − (u2 − λ2)2 + x2u2
x

1 − λ2 + 2u + 2u2 + 2uλ2

1 + u2

)

∆46 = −∆37

8We use the symbolism ∆ij to mean the determinant of the matrix which has Xi
1

and Xj
1

in the second

and third rows respectively.
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∆47 =

(

u − λ

u + λ

)
1

2λ

u2
x

1 − λ2 + 2u + 2u2 + 2uλ2

1 + u2

∆48 =

(

u − λ

u + λ

)
1

2λ

ux

(

λ2 − u2 + xux
1 − λ2 + 2u + 2u2 + 2uλ2

1 + u2

)

∆56 = −∆13

∆57 = ∆14

∆67 = −∆24

∆68 = −∆14

∆78 = ∆24.

As a consequence the following are first integrals9 of system (2.17) and consequently of
equation (2.11):

I1 =
∆13

∆14

=
u2 − λ2 + xux

ux

I2 =
∆13

∆15

=

(

u − λ

u + λ

)
1

2λ λ2 − u2

u2 − λ2 + xux

I3 =
∆13

∆17

=

(

u − λ

u + λ

)
1

2λ (λ2 − u2)(u2 − λ2 + xux)

u2
x

= I2I
2
1

I4 =
∆13

∆18

=

(

u − λ

u + λ

)
1

2λ λ2 − u2

ux
= I2I1

I5 =
∆14

∆15

= −
I2

I1

I6 =
∆14

∆17

= I2

I7 =
∆14

∆18

=
∆13

∆15

= I2

I9 =
∆15

∆17

= −I2
1 .

Naturally we have omitted all the other possible combinations (seventy-eight in total).

3 A novel application

If one looks for a suitable number10 of Lie symmetries admitted by a system of nth first-
order ordinary differential equations11 such as (2.8), then the following strategies may be
used in the given order:

9We recall that (2.11) possesses just two functionally independent first integrals and naturally the listed
integrals are functions of these.

10It would be ideal to find n Lie symmetries, although then we have to find an ad hoc method if the
corresponding Lie algebra is not solvable [22], [7].

11Any ordinary differential equation of order n can be trivially transformed into a system of n first-
order ordinary differential equations. Therefore, if a single nth-order equation does not possess Lie point
symmetries, then we have to turn to any “equivalent” system of first-order equations, which possesses an
infinite number of Lie point symmetries.
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1. Eliminate in turn each of the variables wi – if feasible – in order to obtain an
equivalent nth-order system which contains a single equation of second order and
n − 2 equations of first order. The admitted Lie symmetry algebra is no longer
infinite-dimensional and the Lie group analysis can be deterministically applied ([43],
[57], [49], [15], [53]). A secondary outcome of this strategy is that first integrals can
also be determined ([39], [44], [35]).

2. Decrease the order of system (2.8) by one choosing in turn one of the variables wi

as the new independent variable. Then apply either Strategy 1 or 3 in this list. For
example, if w1 ≡ y is the new independent variable, then system (2.8) becomes

dwk

dy
=

Wk

W1

≡ Ωk(y,w2, . . . , wn) (k = 2, n). (3.1)

This method has been illustrated in several papers (e.g. [47], [35], [45]) since its first
instance, namely the Kepler problem [43].

3. Increase the order by using the transformation suggested by the Jacobi last multi-
plier, i.e. introduce a new dependent variable R such that

Ṙ =

n
∑

i=1

∂Wi

∂wi
(3.2)

and eliminate in turn – if feasible – each wi which appears in (3.2). Then system
(2.8) transforms into a system of a single second-order and n−1 first-order equations.
If a new independent variable was first chosen (Strategy 2), say w1 ≡ y, then R is
assumed to satisfy

dR

dy
=

n
∑

k=2

∂Ωk

∂wk
(3.3)

and then the strategy goes as above.

The reminder of this Section is dedicated to illustrate Strategy 3, although equation (3.42)
is an example of Strategy 1.

3.1 An equation from Kamke

We consider the following equation [30]

y′′ =
y′2

y
+ f ′(x)yp+1 + pf(x)y′yp, (3.4)

where p 6= 0 is a real constant and f 6= 0 is an arbitrary function of the independent
variable x. This equation does not possess Lie point symmetries for general f(x) and yet
is trivially integrable [17]. We show that, if we increase the order of the corresponding
system of first-order equations using the Jacobi last multiplier, then we find enough Lie
point symmetries to enable us to integrate equation (3.4) à la Lie. Note that equation (3.4)
has been cited as the prototype of a solvable equation with no Lie symmetries ([17], [35]).
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Equation (3.4) can be trivially transformed into a system of two first-order differential
equations, i.e.,

w′

1 = w2,

w′

2 =
1

w1

(wp+2

1
f ′ + w2

2 + wp+1

1
w2fp), (3.5)

with w1 = y and w2 = y′ the two new unknowns in the independent variable x. The
Jacobi last multiplier of system (3.5) has to satisfy equation (2.7), i.e.,

d log(M)

dx
+ pwp

1
f + 2

w2

w1

= 0

which suggests the transformation12 w2 = w1(r
′

2−pwp
1
f)/2. Then system (3.5) transforms

into a system of one second-order and one first-order differential equation in the two
unknowns, r2 and w1, i.e.,

w′

1 =
w1

2
(r′2 − wp

1
fp),

r′′2 =
wp

1

2

((

r′2 − wp
1
fp
)

fp + 2f ′
)

(p + 2). (3.6)

If we apply Lie group analysis to this system13, then we obtain a determining equation of
parabolic type for V (x,w1, r2) in two independent variables [39]. Its characteristic curve is
w1e

−r2/2 which yields the transformation, w1 = r1e
r2/2, with r1 a new unknown function

of x. Then system (3.6) is transformed into:

r′1 = −
1

2

(

e
r2
2 r1

)p
fpr1,

r′′2 =

(

e
r2
2 r1

)p

2

(

2pf ′ + 4f ′ −
(

e
r2
2 r1

)p
(p + 2)f2p2 + pf(p + 2)r′2

)

, (3.7)

which admits a two-dimensional Lie symmetry algebra, L2, generated by

Γ1 = r1∂r1
− 2∂r2

, Γ2 =
1

r1

∂r1
−

2(p + 2)

pr2
1

∂r2
. (3.8)

A basis of differential invariants of L2 of order ≤ 1 is given by:

x̃ = x, ũ = r′2 − (2 + p)pfrp
1
e

pr2
2 . (3.9)

Then system (3.7) can be easily reduced to the following first-order differential equation:

dũ

dx̃
= 0 (3.10)

that yields the trivial general solution ũ = a1. Then we use transformation (3.9) to obtain
r1 in terms of r2 and r′2 , i.e.,

r1 = e−
r2
2

(

r′2 − a1

f(p + 2)

)
1

p

. (3.11)

12Of course r2 6= M . It is not necessary for r2 to be exactly equal to M provided there is a point
transformation between r2 and M .

13We look for Lie operators of the form Γ = V (x,w1, r2)∂x + G1(x, w1, r2)∂w1
+ G2(x, w1, r2)∂r2

.
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Finally we have to solve the following second-order equation in the dependent variable r2:

r′′2 = −(a1 − r′2)
(a1p + 2r′2)pf + 2(p + 2)f ′

2(p + 2)f
, (3.12)

which admits the two-dimensional nonabelian and intransitive Lie symmetry algebra gen-
erated by

X1 = ∂r2
, X2 = e

p
r2−a1x

p+2 ∂r2
. (3.13)

Following Lie’s classification of two-dimensional algebras in the real plane [37] we have to
transform the symmetries into the canonical forms

∂r̃2
, r̃2∂r̃2

(3.14)

with x̄ and r̃2 the new independent and dependent variables, respectively. It is easy to
derive that

x̄ = x, r̃2 = −
p + 2

p
exp

[

p

p + 2
(a1x − r2)

]

(3.15)

and equation (3.12) becomes

d2r̃2

dx̄2
=

dr̃2

dx̄

2f ′ + a1pf

2f
. (3.16)

After two quadratures the general solution is obtained to be

r̃2 = a2

∫

fe
a1px

2 dx + a3 (3.17)

and consequently the general solution of (3.12) is

r2 = −(p + 2) log

(

−
p

p + 2

(

a2

∫

e
a1px

2 f dx − a3

))

+ a1x. (3.18)

Finally the general solution of equation (3.4) is

y = w1 = r1e
r2/2 = e

xa1
2

(

−p

∫

e
xa1p

2 f dy + ã2p

)

−
1

p

(3.19)

with ã2 = −a3/a2.

3.2 Darboux-Brioschi-Halphen system

We now consider the Darboux-Brioschi-Halphen system which was first described in [12],
then separately derived in [5] and solved in [19]:

ẇ1 = w3w2 − w1w3 − w1w2

ẇ2 = w1w3 − w2w1 − w2w3 (3.20)

ẇ3 = w2w1 − w3w2 − w3w1.
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The Darboux-Brioschi-Halphen system appears in a variety of physical contexts, see [20]
and [10] and the references therein.

The Jacobi last multiplier of system (3.20) is given by (2.9), i.e.,

M = exp

(

−2

∫

(w1 + w2 + w3) dt

)

, (3.21)

which suggests the introduction of a new dependent variable, R1, a function of t, such
that

Ṙ1 = w1 + w2 + w3, (3.22)

and elimination of w1, i.e. w1 = Ṙ1 −w2 −w3. Note that W = 2
∫

R1 dt yields the Chazy
equation [8], [10]:

W
...

= 2WẄ − 3Ẇ 2. (3.23)

Then system (3.20) becomes a system of one second-order and two first-order differential
equations in the three unknowns R1, w2, w3. We apply Lie group analysis to this sys-
tem14 and obtain a determining equation of parabolic type for V (t, R1, w2, w3) in three
independent variables [39]. Its characteristic curves suggest the following transformation

w2 = r2 − w3, w3 = r3e
−2R1 +

r2

2
. (3.24)

with r2 and r3 new unknown functions of t. Then system (3.20) is transformed into:

ü1 =
3e4u1u2

2 − 4e4u1u2u̇1 + 4u2
3

4e4u1

u̇2 =
−e4u1u2

2 + 4u2
3

2e4u1

u̇3 = 2u2u3

with u1 ≡ R1, u2 ≡ r2, u3 ≡ r3. This system admits a four-dimensional Lie symmetry
algebra, L4, which in the original unknowns w1, w2, w3 becomes a three-dimensional Lie
symmetry algebra L3 isomorphic to sl(2, IR) generated by the following operators:

X1 = ∂t,

X2 = t∂t − w1∂w1
− w2∂w2

− w3∂w3
,

X3 = −1

2
t2 ∂t +

(

w1t −
1

2

)

∂w1
+
(

w2t −
1

2

)

∂w2
+
(

w3t −
1

2

)

∂w3
.

Note that, if we evaluate the determinant of matrix (2.6) corresponding to these three Lie
symmetries, then we find that a Jacobi last multiplier of system (3.20) is given in closed
form by:

M1 =
1

(w1 − w2)(w1 − w3)(w2 − w3)
. (3.25)

14We look for Lie operators of the form Γ = V (t, R1, w2, w3)∂t + G1(t, R1, w2, w3)∂R1
+

G2(t,R1, w2, w3)∂w2
+ G3(t, R1, w2, w3)∂w3

.
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3.3 A SIS system

In [49] a simple epidemiological model was examined from the viewpoint of both Lie and
Painlevé. The model is a particular case of the classical SIS model introduced by Kermack
and McKendrick [31]. It was assumed that recovery from the nonfatal infective disease
does not confer immunity. The two first-order ordinary differential equations are [4]

Ṡ = −βSI − µS + γI + µK

İ = βSI − (µ + γ)I, (3.26)

in which the overdot denotes differentiation with respect to time, S(t) is the suscepti-
ble component of the population, I(t) is the infected component of the population, µK
represents a constant birth rate, µ is the proportionate death rate, β is the infectivity
coefficient of the typical Lotka-Volterra interaction term and γ the recovery coefficient.
The disease was assumed to be nonfatal so that the standard term removing deceased in-
fectives (−αI in Ref [4]) was omitted. In [49] a second-order ordinary differential equation
was consequently obtained for I, viz.

IÏ − İ2 + βI2İ + µIİ + βµI3 + µ(µ + γ − βK)I2 = 0, (3.27)

and, because this equation possesses only one trivial Lie point symmetry, hidden Lie
symmetries were sought and successfully found by increasing the order of equation (3.27)
by the transformation of Riccati type I = ẇ/(βw). Here we show that the same result
could have been achieved by using the Jacobi last multiplier.

The Jacobi last multiplier of system (3.26) suggests the following transformation

S =
ṙ1 + βI + γ + 2µ

β
(3.28)

which yields a system of one second-order and one first-order differential equations in
the two unknowns I and r1. We apply Lie group analysis to this system15 and obtain a
determining equation of parabolic type for V (t, I, r1) in two independent variables [39]. Its
characteristic curve yields the transformation, I = r2e

r1, with r2 a new unknown function.
Then system (3.26) is transformed into:

ṙ2 = r2(e
r1βr2 + µ)

r̈1 = −2e2r1β2r2
2 − 4er1βµr2 − 2er1βr2ṙ1 + βKµ − γµ − 2µ2 − µṙ1 (3.29)

which admits a three-dimensional Lie symmetry algebra generated by16.

Γ1 = ∂t, Γ2 = −∂r1
+ r2∂r2

, Γ3 = eµt

(

−
2

r2

∂r1
+ ∂r2

)

. (3.30)

3.4 Initial value problems

In [21] Hydon showed that initial-value problems may have more Lie symmetries than the
underlying ordinary differential equations and presented an ad hoc method which uses

15We look for Lie operators of the form Γ = V (t, I, r1)∂t + G1(t, I, r1)∂I + G2(t, I, r1)∂r1
.

16Of course Γ1 is the trivial symmetry of (3.26) and Γ2 is due to the transformation (3.28).
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Taylor series about x = 0 in order to construct symmetries of a class of initial-value
problems, namely third-order ordinary differential equations

y′′′ = ω(x, y, y′, y′′) (3.31)

subject to the initial condition

y′′(0) = 0. (3.32)

Here we consider the three examples given in [21] in order to show that Lie symmetries
of the initial-value problem can be found by using the transformation suggested by the
Jacobi last multiplier of the underlying equivalent system of first-order ordinary differential
equations17. Furthermore we use the Jacobi last multiplier in order to find symmetries of
another equation presented in [21] as open problems.

The first example in [21] is the Blasius equation, viz.

y′′′ = yy′′, (3.33)

which can be trivially transformed into the following system of three first-order ordinary
differential equations:

w′

1 = w2,

w′

2 = w3, (3.34)

w′

3 = w1w3.

The Jacobi last multiplier suggests the transformation, w1 = r′1, with r1 a new unknown
function of x which yields a system of one second-order and two first-order differential
equation in the three unknowns r1, w2 and w3, viz.

r′′1 = w2

w′

2 = w3 (3.35)

w′

3 = r′1w3.

We apply Lie group analysis to this system18 and obtain a determining equation of
parabolic type for V (x, r1, w2, w3) in two independent variables [39]. Its characteristic
curve yields the transformation, w3 = r3e

r1 , with r3 a new unknown function of x. Then
system (3.35) is transformed into:

r′′1 = w2 (3.36a)

w′

2 = er1r3 (3.36b)

r′3 = 0 (3.36c)

which means that r3 is a constant, actually r3 = y′′(0) = 0 from condition (3.32). Then
w′

2 = 0, which implies w2 = a1 a constant, and Lie group analysis applied to equation

17Actually in the third example one does not need to introduce the Jacobi last multiplier, the reduction
method [43] being sufficient.

18We look for Lie operators of the form Γ = V (x, r1, w2, w3)∂x + G1(x, r1, w2, w3)∂r1
+

G2(x, r1, w2, w3)∂w2
+ G3(x, r1, w2, w3)∂w3

.
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r′′1 = a1 yields an eight-dimensional Lie symmetry algebra. Note that, if r3 6= 0, then
the system of two equations (3.36a)-(3.36b) would have admitted just a two-dimensional
trivial Lie point symmetry algebra.

A second example in [21] is:

y′′′ =
2x

y5
−

5y′y′′

y
(3.37)

which can be trivially transformed into the following system of three first-order ordinary
differential equations:

w′

1 = w2,

w′

2 = w3, (3.38)

w′

3 =
2x

w5
1

−
5w2w3

w1

.

The Jacobi last multiplier suggests the transformation, w2 = −r′2w1/5, with r2 a new
unknown function of x which yields a system of one second-order and two first-order
differential equations in the three unknowns r2, w1 and w3. We apply Lie group analysis
to this system and obtain a determining equation of parabolic type for V (x,w1, w3, r2)
in three independent variables [39]. Its characteristic curves yield the transformations,
w1 = r1e

−r2/5 and w3 = r3e
r2 , with r1 and r3 new unknown functions of x. Then system

(3.38) is transformed into three separated equations, two of them being easy to solve:

r′1 = 0 ⇒ r1 = a1

r′3 =
2x

a5
1

⇒ r3 =
a5

1a2 + x2

a5
1

(3.39)

and a third equation

r′′2 =
−25 exp

[

6r2

5

]

(a5
1a2 + x2) + a6

1r
′

2
2

5a6
1

. (3.40)

Note that condition (3.32) implies a2 = 0. In this case equation (3.40) admits a two-
dimensional Lie point symmetry algebra generated by:

X1 = 1

5
x (−x∂x + 5∂r2

) , X2 = − 3

10
x∂x + ∂r2

(3.41)

and thus can be solved à la Lie.
A third example in [21] is:

y′′′ = y′′2 +

(

y′

y
− xy

)

y′′ + y (3.42)

which can be trivially transformed into the following system of three first-order ordinary
differential equations:

w′

1 = w2, (3.43a)

w′

2 = w3, (3.43b)
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w′

3 = w2
3 +

(

w2

w1

− xw1

)

w3 + w1. (3.43c)

Here we show how to obtain Lie symmetries by using just the reduction method [43]. If
we derive w2 from equation (3.43c), i.e.,

w2 =
w1

w3

(

w′

3 + xw1w3 − w1 − w2
3

)

, (3.44)

then (3.43) transforms into a system of one second-order and one first-order equations in
the unknowns w1, w3. We apply Lie group analysis to this system and obtain a deter-
mining equation of parabolic type for V (x,w1, w3) in two independent variables [39]. Its
characteristic curve yields the transformation, w1 = r1w3, with r1 a new unknown function
of x. Then equation (3.43a) is transformed into a Riccati equation, viz.

r′1 = r2
1(xw3 − 1) − r1w3, (3.45)

which suggests the use of the transformation

r1 = −
R′

1

(xw3 − 1)R1

, (3.46)

with R1 a new unknown function of x, in order to obtain

R′′

1 = R′

1

xw′

3 − w3(xw3 − 2)

xw3 − 1
. (3.47)

This can be easily integrated once to obtain

R′

1 = a1(xw3 − 1)e−
∫

w3 dx. (3.48)

This suggests the transformation w3 = −r′3/r3 in order to remove the exponential of an
integral. Then equation (3.47) is transformed into

R′′

1 = R′

1

xr′′3 + 2r′3
xr′

3
+ r3

(3.49)

which is easy to integrate with two quadratures. Its general solution is:

R1 = a1xr3 + a2 (3.50)

Now we apply Lie group analysis to the third-order equation in r3 ≡ u, viz.

u′′′ =
1

(a1ux + a2)2a1u

[

(

(3u′x2 + 2u′′)u + (2u′ + 3u′′x)u′
)

a2
1a2u + (3a1u

′ + a2)a
2
2u

′

−
(

((2u′ − 3u′′x)u + 2u′2x)u′x − ((x3 − 2)u′ + 2u′′x)u2
)

a3
1u
]

. (3.51)

If a2 = 0, then we obtain a four-dimensional Lie point symmetry algebra generated by

X1 = u log(u)∂u,

X2 = u∂u,
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X3 = xuK 2

3

(

2

3
x

3

2

)

∂u, (3.52)

X4 = xuI 2

3

(

2

3
x

3

2

)

∂u,

with K being the modified Bessel function of the second kind and I the modified Bessel
function of the first kind19. As far as we know, this is only the second appearance of
special functions in the generators of Lie symmetries admitted by a nonlinear differential
equation. The preceding example, which involves elliptic integrals, can be found in [55].

Another equation given in [21] is the following20:

y′′′ =

(

y −
x2

2

)

(y′′ − 1) (3.53)

which can be trivially transformed into the following system of three first-order ordinary
differential equations:

w′

1 = w2,

w′

2 = w3, (3.54)

w′

3 =

(

w1 −
x2

2

)

(w3 − 1).

The Jacobi last multiplier suggests the transformation, w1 = r′1/r1 + x2/2, with r1 a
new unknown function of x which yields a system of one second-order and two first-order
differential equations in the three unknowns, r1, w2 and w3. We apply Lie group analysis to
this system and obtain a determining equation of parabolic type for V (x, r1, w2, w3) in two
independent variables [39]. Its characteristic curve yields the transformation, w3 = r1r3+1,
with r3 a new unknown function of x. Then system (3.54) is transformed into the following
system:

r′′1 =
r′1

2

r1

+ r1w2 − xr1

w′

2 = r1r3 + 1 (3.55)

r′3 = 0 ⇒ r3 = a0.

If a0 = 0, then w2 = x + a1 and r1 ≡ u has to satisfy the following second-order ordinary
differential equation:

u′′ =
u′2

u
+ a1u (3.56)

which admits an eight-dimensional Lie symmetry algebra generated by the following op-
erators:

Γ1 = −1

4

(

−2 log(u) + a1x
2
) (

2x∂x + (2 log(u) + a1x
2)u∂u

)

Γ2 =
(

−3

2
a1x

2 + log(u)
)

∂x − a2
1x

3∂u

19We used Maple 9 to find the general solution of the determining equation −x2s′′(x) + 2xs′(x) + (x3 −

2)s(x) = 0.
20It comes from Blasius boundary layer theory.
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Γ3 = 1

2
x
(

2x∂x + (2 log(u) + a1x
2)u∂u

)

Γ4 = −1

2
u(−2 log(u) + a1x

2)∂u

Γ5 = ∂x (3.57)

Γ6 = x(∂x + a1xu∂u)

Γ7 = u∂u

Γ8 = xu∂u.

This means that equation (3.56) is linearizable [37] by means of a point transformation. In
order to find the linearizing transformation we have to look for a two-dimensional abelian
intransitive subalgebra and, following Lie’s classification of two-dimensional algebras in
the real plane [37], we have to transform it into the canonical form (2.13). We find that
one such subalgebra is that generated by Γ1 and Γ3. Then it is easy to derive that

x̃ = −
2x

−2 log(u) + a1x2
, ũ =

2

−2 log(u) + a1x2
(3.58)

and equation (3.56) becomes

d2ũ

dx̃2
= 0 (3.59)

which trivially yields ũ = b1x̃ + b2 with b1 and b2 arbitrary constants. Consequently the
general solution of (3.56) is

u = exp

(

b2a1x
2 − 2b1x − 2

2b2

)

(3.60)

and finally

y = w1 =
r′1
r1

+
x2

2
= a1x −

b1

b2

+
x2

2
. (3.61)
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