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Abstract

The family of simple quasilinear systems in one space variable is partitioned into
classes of commuting flows, i.e., symmetry classes. The systems in a symmetry class
have the same zeroth order conserved densities and the same Hamiltonian structure.
The zeroth and first order conservation laws and the Hamiltonian structure of the
systems in a complete symmetry class are described. If such a system has a de-
generate characteristic speed, then it has conservation laws of arbitrarily high order.
Symmetry classes of 2-component hyperbolic systems correspond to coframes on the
plane. The invariants of 2-component Hamiltonian hyperbolic symmetry classes are
given. An exact symmetry class of 2-component hyperbolic systems is characterized
by its canonical representative, and the first order conservation laws of the canonical
system correspond to the infinitesimal automorphisms of the coframe. The normal
forms of the rank 0 and rank 1 exact classes are listed. A simple symmetry class is
tri-Hamiltonian if and only if the metric of its coframe has constant curvature. The
normal forms of the tri-Hamiltonian simple classes are listed.

I Introduction

There are many physical systems which are mathematically approximated by first order
quasilinear evolution equations. Hyperbolic equations of this type are associated with wave
propagation. The symmetry structure, conservation laws, and Hamiltonian structure of
first order hyperbolic quasilinear systems in one space variable have been recently studied
by Verosky [1-3], Tsarev [4, 5], Nutku [6], Olver and Nutku [7], Serre [8, 9], and Arik, et
al.[10]. Their results are unified and extended here.

Section II is an outline of the necessary geometric formalism. It is shown in Sec-
tion III that the family of simple quasilinear systems is partitioned into symmetry classes.
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A symmetry class is a collection of commuting flows. The systems in a class have the
same zeroth order conserved densities. Dubrovin and Novikov [11] discovered that each
flat metric on the space of field variables intrinsically defines a Poisson bivector. The
simplest Hamiltonian systems generated by such a bivector are quasilinear. The systems
in a symmetry class have the same Hamiltonian structure.

Complete symmetry classes are discussed in Section IV. These are infinite dimensional
spaces of diagonalizable systems. The space of conserved densities for the systems in a com-
plete class is also infinite dimensional. These systems are the simplest higher dimensional
generalization of 2-component hyperbolic systems. The determination of the Hamiltonian
structure of a complete symmetry class is reduced to the solvability of a system of linear
equations. This implies that multiple Hamiltonian formulations are compatible. An exam-
ple from gas dynamics is used to illustrate the theory. The first order conserved densities
of the systems in a complete symmetry class are characterized in Section V. Systems with
degenerate characteristic speeds are shown to have conserved densities of arbitrarily high
order. The Born-Infeld equation is an example.

Symmetry classes of 2-component hyperbolic systems are studied in Section VI. There
is a natural local correspondence between these classes and coframes on the plane. Dy-
namical properties of the systems in a class are thereby related to geometric features of the
corresponding coframe. A surface metric is either definite or indefinite, so there are two
local canonical forms for 2-component Hamiltonian quasilinear systems. The invariants of
hyperbolic Hamiltonian symmetry classes in canonical form are presented. In particular,
the separability condition of Olver and Nutku [7] is shown to be equivalent to the invariant
condition of exactness. An exact symmetry class is characterized by its canonical repre-
sentative, and the first order conservation laws of this system correspond naturally to the
infinitesimal automorphisms of the related coframe. The existence of an automorphism
permits the derivation of the normal forms of rank 0 and rank 1 exact symmetry classes.
Most elementary of all are the simple symmetry classes. Each of these contains an elas-
ticity system and an isentropic gas dynamics system, and the propagation speeds of these
systems are related to the invariants of the coframe. For example, polytropy is equivalent
to the condition that the coframe have rank 0. The tri-Hamiltonian structure of the poly-
tropic gas dynamics systems was discovered by Nutku [6]. That discovery is generalized
here. It is proved that a simple symmetry class has multi-Hamiltonian structure if and
only if the metric defined by the coframe of the class has constant curvature, in which case
the class is tri-Hamiltonian. The normal forms for the tri-Hamiltonian simple classes are
listed. The paper concludes with the remarks of Section VII.

II Geometric Formalism

The geometric context for this work is outlined here. Further details can be found in Olver
[12], Doyle [13], and references therein. A coordinate z on X C R is a space variable, and
coordinates u',...,u™ on U C R™ are field variables. A phase is a map X — U, i.e., an
n-tuple u(x) of functions u!(x),...,u™(x). An evolutionary vector field is the infinitesimal
generator of a flow on the phase space. The coordinate representation of an evolutionary
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vector field is

V = Q% Oy, (2.1)

where Q'[u], ..., Q"[u] are differential functions, i.e., smooth functions of z and of a finite
number of the derivative coordinates uj = du®/dx’. A trajectory of the vector field is an
n-tuple u(z,t) which satisfies the differential constraints

ugt = Q%[ul.

The directional derivative of a differential function F[u] along the vector field (2.1) has

the coordinate description
oF

a’
8uj

VF =73 (D;Q%

where

and
DCE = Z U?+1 aul;t
is the total derivative with respect to x. Evolutionary derivations commute with total

derivatives, i.e.,

V(D,F)=D,(VF)
for all differential functions F. The Lie bracket of evolutionary vector fields
V =Q%0ye, W = R*0yo
is the evolutionary vector field
[V,W] = 5%0ya, S*=VR*—-WQ"

The Lie bracket is formally equivalent to differentiating W along the flow of V| via pull-
back. Also,
[VW]F=V(WF)-W(VF).

The evolutionary vector fields V, W are symmetries of one another if [V, W] = 0. This
infinitesimal criterion is formally equivalent to the requirement that the flow of V carry
trajectories of W onto new trajectories of W.

A density is a horizontal 1-form F[u] dz. The total differential of a differential func-
tion F' is the density (D, F') dx. The action of evolutionary vector fields on densities is

V (Fdx) =V Fdx.

A functional is the formal integral over X of a density. Algebraically, the linear space of
functionals is the space of densities modulo the space of total differentials. The action of
evolutionary vector fields on densities factors to an action

V/Fdx:/VFda:
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of evolutionary vector fields on functionals. In physical terms, functionals are the dy-
namical variables of an evolutionary system. A conservation law for the system V is a
functional [T dx such that

\% /de — 0. (2.2)
The condition (2.2) is formally equivalent to the requirement that the functional be con-

stant along the trajectories of V. Note that (2.2) holds if and only if there is a differential
function X such that

VT +D,X =0. (2.3)
This implies
O () + 2 (X)) = 0
ot ox -

whenever u(z,t) is a trajectory of V, in which case
d b
& [ TG, t) do = Xful(a.t) - X[ul(b.)

for any interval [a, b], so that the time rate of change of the total quantity of T'[u] enclosed
in a spatial region is equal to the amount of X[u] flowing into the region. The densities
T dx and X dz are the conserved density and the flux of the conservation law. The space
variable x is fixed for the duration, so it will be convenient to refer simply to the functions
T and X as the conserved density and flux.

The tensor calculus of finite dimensional differential geometry generalizes to functional
tensor calculus. The objects dual to evolutionary vector fields are functional 1-forms. The
coordinate representation of a functional 1-form is

Q= /Ra du® dx, (2.4)

where Ry,..., R, are unique differential functions. The contraction of the 1-form (2.4)
with the vector field (2.1) is the functional

(Q,V) = /RaQa dz.

The variational differential of a functional [ F'dz is the unique functional 1-form § [ F' dz

such that
<5/de,V> :V/Fdx

for all evolutionary vector fields V. Formal integration by parts proves
OF
5/Fdx:/—duad:v,
ou®

== =2 (-1)'Djodue

where



SYMMETRY CLASSES OF QUASILINEAR SYSTEMS 229

is the ath variational derivative. Note that
1)
5 o

for any differential function F. Conversely, a differential function with variational deriva-
tives equal to zero is locally equal to a total derivative.

= _(D,F)=0

See Doyle [13] for a thorough discussion of differential geometric bivectors. Only
the following abbreviated version is needed here. A nondegenerate 1-weight differential
geometric Poisson bivector ® is described in coordinates by a Poisson operator

DB = g‘m(u) D, + bg‘ﬁ(u)u;, (2.5)
where ¢ is symmetric, det g # 0,

Dg*P
ouY

=037 + b5, (2.6)
and the connection V on U with coefficients
75 =—b)"gxs (2.7)

is symmetric and integrable. The notation u, = w; is used here. These conditions on the
operator (2.5) ensure that the bracket

= . Oéﬂ
{/Fdx,/Gda:} <®,6/Fd:n,6/de> /(WD S

is skew-symmetric and satisfies the Jacobi identity

of{fras four). [raf - 29

where the notation indicates cyclic summation. Note that (2.6), (2.7) imply that V is the
Levi-Civita connection for the flat metric

g = gag du® ® duP. (2.9)

A functional H = [ H dx generates a Hamiltonian evolutionary vector field X4 such

that
XH/Fdx:{/Fdx,/de} (2.10)

for all functionals [ F'dz. In coordinates,

6H
X3 = Q% Oyo, Q" Daﬁéuﬁ (2.11)

In physical terms, the generating functional is the energy of the Hamiltonian system. The
conservation laws for a Hamiltonian system X4, are the functionals [ F'dz such that

{/Fdac,/Hdac} =0, (2.12)
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because of (2.10). For example [ H dzx is a conservation law for Xy, i.e., the energy of a
Hamiltonian system is conserved. The Jacobi identity (2.8) implies that the map

H+— — Xy

is a Lie algebra homomorphism from the space of functionals to the space of evolutionary
vector fields. Hence if F = [ F dx satisfies (2.12) then

(X, X] =0,

so that the conservation laws for a Hamiltonian system generate symmetries of the system.

A functional F is a Casimir of the bivector if Xz = 0, in which case F is a conservation
law for any Hamiltonian system. The densities of the Casimirs of the Poisson bivector
©® described in coordinates by the operator (2.5) are the exponential coordinates of the
flat metric (2.9) (modulo total derivatives). These are called Darbouz coordinates for ©,
because © is described in these coordinates by the constant coefficient Poisson operator

D =eD,,

where ¢ is a constant, invertible, symmetric matrix. In appropriate Darboux coordinates,
the matrix € is diagonal with diagonal entries equal to +1.

III Symmetry Classes of Quasilinear Systems

Consider a system of partial differential equations

uto‘—l—Ag(u)uf:O, a=1,...,n. (3.1)
It is described in field variables @', ..., %" by the equations
~ ~ ou® ou'
i+ Ay@yal =0, Ay =TT A

L Y

Hence the (1,1)-tensor
A = Af 0o @ du”
on U is intrinsically associated with the system, which therefore has the geometric descrip-
tion
u; + Au, =0. (3.2)
Systems of type (3.2) are quasilinear. A quasilinear system is simple if the characteristic

polynomial of its tensor is simple, and is semisimple if the minimal polynomial of its tensor
is simple.

For example, the quasilinear system associated with a Hessian tensor

A=-V?H,
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where V is the Levi-Civita connection of a semiRiemannian metric on ¢ and H(u) is a
function on U, is

w = V2Hu, = Vy, VH.

This equation states that the vector which describes the instantaneous evolution of a phase
u(x) is the covariant derivative of VH along u(z). A Hessian tensor is self-adjoint with
respect to the relevant metric. The Hessian systems generated by a definite metric are
therefore semisimple.

The evolutionary vector field which represents the quasilinear system (3.2) is
V=Q%0e,  Qu] = —Aj(u)uf.
A functional [T dx is conserved along the flow of V if and only if

)

—(VT)=0 3.3

~(vT) =0, (33)
by (2.3), because the space of total derivatives is locally equal to the common kernel of
the variational derivatives. If T'= T'(u) then the condition (3.3) is

) w0

%@,al‘lﬁ) - W(T Aa)y

;L Ty
which holds if and only if
dI'A =dX

for some function X (u), which is then the flux associated with the conserved density T.
A quasilinear system is a system of conservation laws if it has functionally independent
conserved densities T (u), ..., T"(u). In the coordinates u' = T, ... u™ = T™, the system
then has the form

uf + X9 =0,
where X!(u),..., X"(u) are the associated fluxes.

The Hamiltonian system (2.11) generated by the Poisson operator (2.5) and by a
functional [ H(u)dx has the form (3.1), where

A% =—9""Hp — bngﬂ =—g""(Hqp — F%Hm),

i.e.,

A =-V?H,

where V is the connection (2.7) of the flat metric (2.9). Such a system is therefore Hessian.
For the duration, a quasilinear system is considered to be Hamiltonian if and only if it is
Hessian with respect to a flat metric on Y. Fix Darboux coordinates in which the bivector
is described by the operator D = €D, where ¢ is a diagonal matrix with diagonal entries
€q = €% = £1. A Hamiltonian system u; = V2 Hu, is described in these coordinates by

uf' = (eqH ) (3.4)

x)
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hence is a system of conservation laws. The conservation laws (3.4) imply the additional
conservation laws

and

H, = (;EQ(H’“)ZL' (3.6)

The Hamiltonian system generated by the density T'(u) = €4 (u®)?/2 of the conservation
law (3.5) is the translation generator u; = u,, which is a symmetry of u, = V2 Hu,,
because the latter is independent of z. The conservation law (3.6) asserts that the integral
of the density H is conserved along its own Hamiltonian flow.

The symmetries of V are the evolutionary vector fields
W = R Oya

such that
V R = W Q“. (3.7)

For example, if R* = R*(u) then W is simply a vector field on U, and is a symmetry of
V if and only if
LywA =0,

where Lyys is the Lie derivative. Hence there are coordinates in which the matrix rep-
resentation of A is constant if and only if there is a basis of commuting vector fields
Wiq,..., W, such that

Lyw A=-=Lyw A=0,

i.e., (3.2) has a linear coordinate representation if and only if it has an n-dimensional
abelian algebra of zeroth order symmetries. If

W = R%Oyo, R“[u] = —B§(u)uf

is the evolutionary vector field of a second quasilinear system defined by a (1,1)-tensor B
then the symmetry conditions (3.7) are

ASB) = BIA, (3.8)
and
0A% O0AY 0AS  0AS 0B 0BY
B 2 el Alet/ B I = 1/ B et A/}
(-8 (5 - (e
3.9
8B7 B 8Bn A
ou” ou” B

Note that (3.8) holds if and only if the tensors A and B commute.

Theorem 3.1 was proved by Verosky [3].
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Theorem 3.1 Two systems of conservation laws
uf + X9 =0, u+Y>=0
are symmetries if and only if their tensors commute.

P r o o f The tensors of these systems are described in the given coordinates by the
matrices

o X . ove
B gub’ B gub’

hence (3.9) holds. O

Corollary Two Hamiltonian quasilinear systems generated by the same nondegenerate
1-weight Poisson bivector are symmetries if and only if their tensors commute.

P r o of These are systems of conservation laws in Darboux coordinates for the bivec-
tor. O

A quasilinear symmetry of a simple system is semisimple, and the tensors of the sym-
metries of a simple system commute with one another. Theorem 3.2 partitions the family
of simple systems into symmetry classes, Theorem 3.3 proves that the systems of a sym-
metry class have the same zeroth order conserved densities, and Theorem 3.4 proves that
the systems of a symmetry class have the same Hamiltonian structure.

Theorem 3.2 Symmetry is an equivalence relation on the family of simple systems.

Proof Fixasimple system u; + Au, = 0. Locally, there are distinct smooth complex
functions Ai, ..., A, and nonzero complex vector fields X1, ..., X,, such that

AX, = A Xa.
In coordinates,
Xo =UPd, s, (3.10)

where U(u) is an invertible complex matrix. If A is the matrix representation of A in

these coordinates then
A=UNU, (3.11)

where A is the diagonal matrix with diagonal entries A1,...,A,. The structure functions
of the complex frame Xy,...,X,, are defined by

[Xa, Xg] = Cngw
or
g = (XoUJ - XgUNU ") (3.12)

If the simple system u; + Bu, = 0 is a symmetry of u; + Au, = 0 then there are distinct
functions p1, ..., uy such that
BXoc = UozXoca

or

B=UuU™!, (3.13)
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where B(u) is the matrix representation of B and p is the diagonal matrix with diagonal
entries pi, ..., ty. The quantity

S n v n n Errvpr—1y
TR %% ) gy - B\ Utusu
{ (au” ous ) v ( oun  Ouv ) 3 et <

is equal to

(ta — /‘ﬁ){XaXﬂy o Xﬂ/\zz + )‘;Zycgoz + ()\QXO‘Ug o )\O‘XQUQ)U_IJ}’

using (3.10)—(3.13). The conditions (3.9) are therefore equivalent to

(b — uﬂ){Xo)% - Xﬁ)‘l} - (Aa— /\ﬁ){Xaug - Xﬁul} =
{(na = 19)0y = 28) = (ha—Ag)(1ty — 1) L,
o X 5\ X
pAa Bho
Aa — /\B Mo — Hp ( )
and \ )
M Ty By T HB clﬁ, a, 3,7 distinct. (3.15)

Aa_/\ﬁ of Mo — Hp
Therefore the conditions (3.8), (3.9) define a transitive relation on the family of simple
systems. O

The equivalence classes of simple systems are symmetry classes. Note that the distributions
(Xq, Xpg) are involutive if and only if CZLB = 0 for v # «, 3, in which case (3.15) is vacuous,

e.g. if n = 2. Theorem 3.3 was proved by Serre [9].

Theorem 3.3 The systems in a symmetry class have the same zeroth order conserved
densities.

P r o o f A regular zeroth order conserved density of u; + Au, = 0 can be used as a
coordinate. The coordinate function u! is a conserved density if and only if

0AL 8A%

oub — Qu’

If uy + Bu, = 0 is a symmetry then (3.9) implies
CA = A'C, (3.16)
where C' is the skew-symmetric matrix with entries

oo oBl BBé
BB due

If uy + Au, = 0 is simple then there is an invertible complex matrix U such that

UTAU = ),
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where )\ is a diagonal matrix with distinct diagonal entries. Condition (3.16) is equivalent
to
U'CAU = U'A'CU,

or
Utcuu—tAu = UtAlU U CU,
or

U'CUN = U'CU,
from which it follows that U*CU is diagonal. Combining this with
(Utcu) = Utctu = —UtcU

proves C' =0, i.e.,
1
OBl _ 0B}
ouP  Ou>’

Note that the argument does not require the symmetry u; + Bu, = 0 to be simple. See
Verosky [3] for generalizations of Theorems 3.2 and 3.3 in the case n = 2.

Theorem 3.4 The systems in a symmetry class have the same Hamiltonian structure. A
symmetry class is Hamailtonian with respect to a 1-weight Poisson bivector ® with metric g
if and only if the Casimirs of ® are conserved densities for the class, and the characteristic
spaces of the class are orthogonal with respect to g.

Proof Assume that the Casimirs of ® are conserved densities for a semisimple system
u; + Au, = 0, and that the characteristic spaces of A are orthogonal. If the system is
simple then a symmetry u; + Bu, = 0 is semisimple, the Casimirs of ® are conserved
densities for u;+Bu, = 0, and the characteristic spaces of B are orthogonal. The bivector
is described in appropriate Darboux coordinates by the operator D = €D, where ¢ is a
diagonal matrix with diagonal entries ¢, = ¢ = +1. The matrix representation of A in
these coordinates is

o 6]

B = .8
for some functions X!(u),..., X"(u), because Darboux coordinates are Casimirs. The
assumptions of semisimplicity and orthogonality imply that there is a complex matrix U
such that

UleU =1

and
A=UN",

where )\ is diagonal. Hence e A = eUAU'e is symmetric, i.e.,
(X% 5 = (£"X7)

so that
e*X*=-H,

)

for some function H(u). Therefore

A% = —EaHﬂﬁ,
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proving that u; + Au, = 0 is Hamiltonian with respect to the bivector @. If the system is
simple then the same argument proves that a symmetry u; +Bu, = 0 is also Hamiltonian.
Conversely, the Casimirs of ® are conserved densities for a Hamiltonian system u;+Au, =
0, and A is Hessian, hence is self-adjoint with respect to g, so the characteristic spaces of
A are orthogonal. O

IV Complete Symmetry Classes

A simple system is hyperbolic if its tensor has real characteristic values, which are then
smooth functions on U, called the characteristic speeds of the system. The characteristic
spaces of the tensor form a basis of 1-dimensional characteristic distributions on U. Con-
versely, fix distinct real functions A, ..., A,, and independent distributions Aq,..., A,. If
X, is a basis for A, and E',..., 2" are the dual 1-forms then

A=) AX,®E®

is a (1,1)-tensor. Note that A thus defined is independent of the choice of basis, and
that the system u; + Au, = 0 is hyperbolic, with characteristic speeds Aj,..., A, and

characteristic distributions A, ..., A,. The symmetry forms
XgA
Q=Y P2 =0 (4.1)
Aa — Ag
B#a

are independent of the choice of basis, hence are intrinsically associated with the system.
Any simple symmetry of a hyperbolic system is also hyperbolic, and the two systems have
the same characteristic distributions. Moreover, hyperbolic systems which are symmetries
of one another have the same symmetry forms, by (3.14), so that a single set of symmetry
forms (4.1) is assigned to each hyperbolic class. A hyperbolic symmetry class is nondege-
nerate if its symmetry forms are independent, in which case they constitute the symmetry
coframe of the class. The characteristic distributions of a nondegenerate symmetry class
are determined by its symmetry coframe.

The simplest hyperbolic systems are those which can be diagonalized. A Riemann
invariant for the system u; + Au, = 0 is a real function r(u) such that

drA = X\dr

for some function A(u). If u(zx,t) is a solution, and (z(t),t) is an integral curve of the
vector field

O — Mu(zx,t))0y
in the x,t plane then
d
T (u(z(t),t)) = 0.

In this sense, a Riemann invariant is a constant of the motion. A quasilinear system is
diagonalizable if the matrix of its tensor is diagonal in some coordinates, which are then
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Riemann invariants of the system. Conversely, a complete set of functionally indepen-
dent Riemann invariants can be used as coordinates, in which the system is diagonal.
Coordinates which diagonalize a system are called Riemann coordinates. Throughout
the discussion, the symbols 7!, ..., 7" will be used exclusively to denote Riemann coordi-
nates. If Aq,..., A, are the characteristic distributions of a hyperbolic system then the
1-codimensional distribution

A®-dA B DA,

is involutive if and only if it is locally the kernel of the differential of a Riemann invariant.
This implies that the system is diagonalizable if and only if the distributions A, + Ag
are involutive for all «, 3. This condition is trivially satisfied if n = 2, so 2-component
hyperbolic systems are always diagonalizable. A symmetry of a simple diagonalizable
system is also diagonalizable, and the two systems have the same Riemann coordinates.

Theorem 4.1 Simple diagonalizable systems are symmetries if and only if they have the
same characteristic distributions and the same symmetry forms.

P roof Compare (4.1) with (3.14), and recall that the conditions (3.15) are vacuous
if the distributions (X, Xg) are involutive. O

The symmetry forms of a diagonalizable symmetry class have Riemann coordinate
description

Q% = Z aap(r) drP. (4.2)
B

If the class is nondegenerate then the structure equations of the coframe 2 are
10" = Lt ot nar
- 205’7 ’

where the functions 3, can be described in terms of the functions ang. If Z1,...,7Z, are
the vector fields dual to Q!,..., Q" then

Zo,Zs] = Cz,@ Z,.
The invariants

give a generic characterization of the frame [14]. A nondegenerate diagonalizable symmetry
class is completely characterized by its symmetry coframe, so it is reasonable to suppose
that the invariants have some relation to the systems in the class. This idea is explored
in Section VI for the case n = 2.

The class with symmetry forms (4.2) consists of the simple systems
M =0, A =0

defined by the solutions Ai(7),..., A,(r) of the linear system of partial differential equa-
tions

Aa,g = aap(r)(Aa — Ag),  a# B (4.3)
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The compatibility conditions of (4.3) are

AaBry = GaBlay — GaB08y — GayOryG, a, 3,7 distinct. (4.4)

Serre [9] proves that the solution space of a compatible system (4.3) is parametrized by
n arbitrary functions of a single variable, and that the family of compatible systems is
parametrized by n? — n arbitrary functions of two variables. If (4.4) holds then

Gafy = Gay,B, By # a, (4.5)
and if (4.5) holds, where

then direct calculation proves (4.4).

Proposition Fix a diagonalizable symmetry class with characteristic distributions
A1, ..., A, and symmetry forms Q!, ... Q" Denote the dual distributions by Al, ... A",
The defining equations for the class are compatible if and only if

dQ* =0 mod A®. (4.6)

P r o of In Riemann coordinates the symmetry forms are (4.2), and the conditions
(4.6) are equivalent to
dr® N\ dQ2* =0,
or
Z Ay dr™ A dr® A dr? =0,

Byy
or

Aafy = Gary,p- U
A diagonalizable symmetry class is complete if its symmetry forms satisfy (4.6). All

hyperbolic symmetry classes are complete in the case n = 2. If A is the tensor of a system
in the class defined by (4.3) then the condition

d(dTA) =0
which defines the zeroth order conserved densities T'(r) is
Top+ aapTa +apaTp = 0. (4.7)

Note that these equations depend only on the functions a,g, so the systems in the class
have the same zeroth order conserved densities, as proved in Theorem 3.3. The conditions
(4.4) are the compatibility conditions of (4.7). Hence the equations (4.7) are compatible
if and only if the symmetry class is complete. Serre [9] proves that the solution space of
a compatible system (4.7) is parametrized by n arbitrary functions of a single variable.

Example 4.1 Consider a diagonalizable class with symmetry forms

oF
Q=S ——af 4.
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where F'(r) is an arbitrary function. In the case n = 2, a class is of this type if and only if
A+ 9% =o.

This case is examined in Section VI. Assume n > 3. The completeness condition (4.4) is

then -
0%e
)
oreor? ’ a7 0

which holds if and only if
F=Inlf () 4o+ 17
for some functions f!,..., f*. Nondegeneracy implies f1/,..., f*’ # 0, so that
F =ln|o|, o=rl4. 4 (4.9)

in suitable Riemann coordinates. Conversely, the 1-forms (4.8) defined by the function
(4.9) constitute the symmetry coframe of a nondegenerate complete symmetry class, be-

cause the coefficients
1-— 5a,@

g

a8 =

satisfy (4.4), and
n—1

deta = (—1)"1 # 0.

O-TL
The symmetry forms are
1
Qr==>"dr’
DI
B#a
and the structure equations are
1

Q¢ =
d n—1

> aral
B

The structure functions are the constants
1

(6N
oy =
hence € is a Maurer-Cartan coframe. O

If a diagonalizable symmetry class is Hamiltonian then Riemann coordinates for the
class are orthogonal coordinates for the metric of the Poisson bivector, by Theorem 3.4.
The Christoffel coefficients of a diagonal metric

g = ga(dr®)? (4.10)
are
Fgﬁ = [9al .8,
Toa = —$loals.  a#8b, (4.11)

Flﬁ = 0, a, 3,7 distinct,
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where )
[ga] =In ‘ga‘i'

The only curvature coefficients which are possibly nonzero are

1 1 1 1
S = 95 d5l0a15 + 199000 + 0]l + ol algsl o

(4.12)
35190 81956 — glgalalgsla+ Y %mMM%wa#@
v #F o,
and
R%a'y = %Rgva = [9al,8y + [9al,8l90) v — [9a],8198] » — [9+],8190] 75 (4.13)

a, B,y distinct.

Theorem 4.2 was proved by Tsarev [4].

Theorem 4.2

i) A diagonalizable Hamiltonian symmetry class is complete.

ii)  Fiz a system of orthogonal coordinates for a flat metric. There is a unique symmetry
class which is diagonal in these coordinates and is Hamiltonian with respect to the Poisson
bivector of the metric.

Proof A (1,1)-tensor A is Hessian with respect to a given flat metric if and only if
the associated (0,2)-tensor A is symmetric and the (1,2)-tensor VA is symmetric in its
covariant arguments. If A is the tensor of the system

M =0, ., A =0
and g is the metric (4.10) then Ay is symmetric. Moreover, the formulas (4.11) imply

<VA; dr?, 8Ta,8T5> — <VA; dr?, 8T@7 ara> = 53(()\0(”3 + ()\a — )\/g)[ga]ﬂ)—

5%0‘5@ + (Mg — Aa)98].a)
so VA is symmetric if and only if

Gap = ~[gals, @ # 0, (4.14)

where
Aag = 7)\04,[3
D WDV
If the symmetry class of the system is Hamiltonian then (4.14) implies (4.5), so the class
is complete. If a flat diagonal metric is given, then the curvature conditions (4.13) imply
that the coefficients a,g given by (4.14) define a complete symmetry class. O

This describes a diagonalizable Hamiltonian symmetry class in terms of its Riemann in-
variants and the metric of the Poisson bivector. It does not determine which complete
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symmetry classes are Hamiltonian. The conditions (4.5) hold if and only if there are
functions G1(r), ..., Gy (r) such that

G
ap = — C;ﬁ

[0}

Note that G, is defined up to multiplication by a nonzero function of r*. The diagonal
metric (4.10) satisfies (4.14) if and only if

__Gd
ga - ha (’]"a)
for some functions hy, ..., hy, in which case the conditions (4.4) imply that the curvature

coefficients (4.13) are zero. The curvature coefficients (4.12) are zero if and only if

/ ,870[ ! &76 ,B,O[ Ot,ﬁ

(4.15)

Gon G
2y hvﬁﬁzo, a # B.
v# o, B

Note that these equations are linear in h. This implies the following result, which has also
recently been reported by Tsarev [5]. See Olver [12] for a discussion of compatibility of
Poisson bivectors, and of bi-Hamiltonian systems.

Theorem 4.3 The bivectors which generate the Hamiltonian structures of a complete
symmetry class are compatible.

P r oo f Ifhk are nondegenerate solutions of (4.15) then h + sk is a nondegenerate
solution for small s. O

Example 4.2 The system

U v U 0 U
(v) + (pu/u v pw/u) (v) =0 (4.16)
w/ 0 0 v w/,

describes the dynamics of a 1-dimensional gas. The field variables u,v,w denote the
density, velocity, and entropy of the gas, and the pressure is p(u,w). The propagation
speed is n(u,w) = /p,. A Hamiltonian structure was discovered by Verosky [2]. The
system is hyperbolic, with characteristic speeds

A =vEn, A=w,
and corresponding characteristic vector fields

X4 =nud, + puava X = pwau - puaw-
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The fact that any function s(w) is a Riemann invariant corresponds to involutivity of the
distribution (X4, X_). The existence of Riemann coordinates is equivalent to involutivity
of the distributions (X4, X), which holds if and only if

NUPyy = 2(NU)y Doy (4.17)

The condition (4.17) is satisfied for any pressure p(u), in which case (4.16) is an indepen-
dent 2-component hyperbolic system

() G 3) (0), =0 419

w + vw, = 0.

augmented by the equation

The system (4.18) is discussed in Section VI. If p,, # 0 then the general solution of
(4.17) is
1

(. w) = F (sw) - ).

u

where s’ # 0, F’ # 0. The propagation speed is entropy independent if and only if F”' = 0,
i.e.,

1
p:S(w)_E7

up to constant multiple, so that n = 1/u. In this case, (4.16) is

U v u 0 U
(v) + (1/u3 v 1/u) (v) =0, (4.19)
s/ 0 0 w s/,

g+ (s—1)g: =0, re+ (¢ —8)re =0, st+=(qg—1)sy =0, (4.20)

or

in Riemann coordinates

g=v+s——, r=-—-v+s——, s = s(w).
u u

The symmetry forms of the class of (4.20) are

1 1 1 1
Q! :—iudr—l-uds, Q2z—§udq+ud8, Q3z—§udq—§udr.

The class is nondegenerate and complete, and G; = G2 = G3 = u. Note that this is the
symmetry class of Example 4.1, in the case n = 3. It consists of the simple systems

gt + Mgz =0, r¢ + Aoy = 0, st + Agsy =0,

where
Moo= Eg) + () +C(s) + 2¢(q),
No = &)+ () +C(s)+ o),

Ns = &) +n(r)+((s) — L (s).
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The zeroth order conserved densities are
T =u(f1(q) + f2(r) + f3(s)). (4.21)
The solution to (4.15) is
1
hi(q) = a + 2¢q, ho(r) = b+ 2cr, hs(s) = _E(G +b) — cs,

where a, b, ¢ are arbitrary constants. Hence the Hamiltonian structure of the symmetry
class is generated by the 3-dimensional space of Poisson bivectors with flat metrics

dq? dr? ds?
2
— . 4.22
" <a+20q+b—|—2cr H(a+0b)+es (4.22)

These bivectors are compatible, by Theorem 4.3. In the field variables u,v,s, the 3-
dimensional space of Poisson operators has basis

01 0 0 0 0
Di=(1 0 0] D,+({0 0 —sz/ul,
0 0 0 0 sz/u 0

0 0 1 0 0 0
Dy=|(0 1/u? 0 Do+ |0 —ug/u® wv/u |,
1 0 —1/u? 0 —vg/u ug/u

—u v s
Dy=2| v (s—1/u)/u? 0 D,+
s 0 —s/u?

— Uy 3V 38z
—vy (3/u—28)ug/ud + sp/u  2(svy —vsg)/u | .
— Sy 2(vsy — svgz)/u 25U, /ud — 85 /u?

The corresponding densities which generate (4.19) are
L 9, 2
H, = —§u(v +p7), Hy = —uwp, Hs = —uv.

The exponential coordinates for a flat metric (4.22) are Casimirs for the corresponding
bivector, hence are conserved densities for the symmetry class. A conserved density (4.21)
is a Casimir for the bivector with metric (4.22) if and only if

_ 9y ugi Ugl
Ty = g95:Ts— 5ol + LT,
T = g;; T, — gng + TR, (4.23)
T = §2T,— 58T, — 557,
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where
g1 = —
The equations (4.23) are equivalent to
2hifr" +hi'fi" =2hafo" + ho'fo! = 2hafs" 4+ h3'f3' =

T — u(h1f1 ! + h2f2/ - 2h3f3 ,)'

If ¢ = 0 then the solution space is spanned by

4ab
0 = = b — D = b 2 2— 2)
i =u, 0 = u(bq — ar), w u(q +ar a—i—bs ,

and T = 1. If ¢ # 0 then the solution space is spanned by
= uy/|hi, 0 = uy/|hal, W = un/|hs|,

and T = 1. In any case, the functions u,?,w are exponential coordinates for the met-
ric. O

V Higher Order Conservation Laws

The systems in a symmetry class do not generally have the same higher order conserved
densities. We now describe the first order conserved densities for systems in a complete
class.

Theorem 5.1 Fix a system
ML =0, A =0

in a complete symmetry class, i.e.,

Wy =3, (5.1)
for some functions G1(r),...,Gp(r). Assume
Aa,a # 0, a=1,...,m, (5.2)
and
Aa,a =0, a=m+1,...,n. (5.3)
Then

ZGaFa(ro‘,rg/Ga)

s a conserved density if and only if

Fa(yaz): ’ (le,...,m7
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where 30" 1 Moo G2 fa(r®) is constant, in which case the associated flux is
Z AaGoFo(r®,re|Gy) — 2z Z )\maGana(ro‘).
o a=1

Each conserved density depending only on r,r, is equivalent modulo the space of total
derivatives to the sum of a density of this form and a zeroth order conserved density.

P r oo f The evolutionary vector field which represents the system is

V== Aroe.

It T = T(r,ry) and & (VT) = 0 then

or
o 9 0T
0=———(VT)=(Ag— o) —=,
o, e VT = o= Aa)g
so that
T => Ta(r,rd).
Therefore 5 s o2 o2
T, T
0=———(VD) =(Mg—Aa)m———= t Aapg=——7T%
or, 5ra( ) =0 )81"%67‘5 + ”gﬁrgﬁrgT
9T 9Ty
)‘oc - )\ + a 7‘57 (64 9
( ’8)87"587"0‘ o orBor? 75
or

’T, G 2T, 0T, Gpa 0T,
o 0 0o po_ 000 | Goa O0b g (54)
orgor? ~ Go Orgory oriore  Gs orlors

using (5.1). If a # [ then the right side of (5.4) is independent of ¢, hence

d ( d%T, o*T,

or¢

J-0 arn

”
“Oraors P orgore *

or

0 o 0 0*T, o
(Gaw""Ga,ﬂrxaT‘%) (aT%&T%rw> _07 Oé;éﬂ
This implies that
o’T,
orgore "

is a function of 7 and r% /Gy, so
To = GoFo(r®, 18 /Go) + Ra(r)ry + Sa(r)
for some functions Fy, Ry, S,. The conditions (5.4) imply

RO&,B = R/B7a’
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or
> Rorg =D.R
(0%
for some function R(r). Now,
o 0 0°T,
(VT) = Ao @
0= ore, 67"0‘ <8r0‘8ra8ra Ta 87“%87“%) at
a[@ a T Oc 3
> (s =) ( ) Ty =
«@ B aHpra Tz T
e org 87’ Go Orgorg
03T, oy 0? o
87’0‘87“0‘67“0‘ " oreore | %’
hence o
T, 9%T,,
R ST =0 =1,...
orgorgore et oreory ’ « SRR
because of (5.2). This implies
O3F, _0°F,
7923 + 022 0,
> Ja(y)
aly
Faly,2) = == +aly) + b(y)=,
so that
G2 N e
GoFo(r*,rl/Gy) = “];:a(r) +a(r*)Go + b(r*)rs, a=1,...,m.

The term aG,, can be absorbed into S, and the term brg is a total derivative. This proves
that the conserved density T is equivalent to a density of the form

ZGaFa (r*re/Ga) + S(r),

where

Differentiation proves that

Z GoFo(r®,1r8/Gy)

a=m+1

is a conserved density with flux

n
Z )\ozGaFa(Tav T?/Ga),
a=m+1
using (5.1), (5.3), for arbitrary functions F,. Finally,

\% {i 7G“2f‘j;(ra) +S(r)} -

a=1 Tz
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m 2 m
_ (Z )\QGO‘fa> + 2 Z )\Oé’aGana - Z)\as,ar?_{_

«
a=1 Tz a=1

m B
TZ
2 Z Z {(Aa — Ag)Gap + )\aﬁGa}Gafar—a =

a=1 f#« v
m 2 m
(L) b3 el - Yosert
a=1 & T a=1 @

hence

m 2
> Cofa +S(r)

«
r(E

a=1

is a conserved density if and only if

J

5 (2 c; MGl fo — Zaj )\aSﬂrg) =0.

The latter holds if and only if >0 ; )\a,aGaQ fa is constant and S is a zeroth order conserved
density, in which case
i Gg fa
a=1 T%

is a conserved density with flux

67
rﬂ?

m 2 m
> Qalafa_y, > AaaGifar O
a=1

a=1

A less general result has recently been reported by Tsarev [5].

A characteristic speed of a hyperbolic system is degenerate if it is constant along its
characteristic foliation. In this case, there are solutions with values constrained to an
arbitrary leaf of the foliation, with arbitrary initial conditions, and these simple solu-
tions propagate along the z-axis with constant speed, for all time. A hyperbolic system
is genuinely nonlinear if the derivative of each speed is nonzero along its characteristic
foliation.

Example 5.1 Fix F(r!,r?) such that F; # 0, F3 # 0. The diagonal system

7"151—’-62}77“;:0, Tf—e2Fr32E:O

is genuinely nonlinear. It will be referred to in Section VI. The symmetry forms of the
class of the system are
Q' = Fydr?, Q®=Fdr,

and G1 = Gy = eI, The first order conserved densities for the system are

T=e?%F (fl(rl) — f2(r2)> + S(r),

1 2
Tz Ty
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where fi1F1 + foF 2 is constant and S is zeroth order conserved density. O

Corollary to Theorem 5.1 If the characteristic speeds of the system in Theorem 5.1
are degenerate then the first order conservation laws are

T = ZGaFa(ro‘,rfg‘/Ga), X = ZAaGaFa(ra,rg‘/Ga),

where the functions Fi, ..., F, are arbitrary.

P roof It suffices to show that every zeroth order conservation law has the form

T = ZGafa(Ta), X = Z)‘aGafa(ra)

for some functions fi,..., f,. This follows from the fact that the solutions of (4.7) are
uniquely determined by their values on the coordinate axes, as proved in Serre [9]. O

Example 5.2 The gas dynamics system (4.20) has degenerate characteristic speeds. The
first order conservation laws are

T = u(Fl(q,qx/u)—}—Fg(r,rx/u)+F3(s,sx/u)),

X = (s = 1)Fi(gq/u) + (a — ) Fa(r,ra/u) + S (a = 1) Fa(s, 5./u)),

by the Corollary. Compare with the result of Verosky [2]. Theorem 5.2 now proves that this
system has conservation laws of arbitrarily high order. These conservation laws generate
higher order symmetries of the system via the Poisson bivectors described in Example
4.2. O

Theorem 5.2 If a characteristic speed of a system in a complete symmetry class is
degenerate then the system has nontrivial conserved densities of arbitrarily high order.

Proof If \,o=0then
V Gy + Dy(AaGa) =0. (5.5)

Hence if
(V4+ADy)P[r]=0

then
V (GaP) + De(AaGaP) = P(V Ga + Do(AaGa)) + Ga(V + XaD,)P =0,

i.e.,

T =GP, X =GP (5.6)
is a conservation law. For example, (V + A\,D,)f = 0 for any function f(r%). Now, (5.5)
implies

[V 4+ D, G, D] =0,
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hence G, 'D, stabilizes ker(V + AoD,). Therefore

10 o (gort) e

are differential functions of arbitrarily high order contained in ker(V + A,D;). The conser-
vation laws (5.6) associated with these functions are trivial, in that 7" is a total derivative
in each case. But note that if Py,..., Py are functions in ker(V + A\,D,) then

(V+AD2)F(Po,...,P;) =0
for any function F. O

The technique of Theorem 5.2 was used by Serre [8] to prove the existence of conserved
densities of arbitrarily high order for the gas dynamics system (4.16).

Example 5.3 If the characteristic speeds of a 2-component hyperbolic system are de-
generate but regular then they may be used as Riemann coordinates, in which the system
has the form

rtl + 7“27“313 =0, r? + rlri =0,

which is equivalent to the Born-Infeld equation [10]. The symmetry class is defined by the

functions 1 1
G =—— Gy = ——.
Pl 2 r2 _ gl

The first order conservation laws are
B Fi(rt, (et —r2)rl) B2, (r? — rh)r2)

T T
+
Pl 2 r2 _ ol

T

r2Fy(rt (rt —r?)rl) n r By (r?, (r? — ri)r2)

— T x
X = 1 2

rl —r2 r2 —rl ’
by the Corollary to Theorem 5.1. The second order conservation laws provided by Theorem

5.2 are
Fi(rl, (= )k, (0 = ) (= 12)rh), )

T= 7“1—7“2 +
By(r2,(r2 = r)r2, (2 = r1)((r2 = 1)r2), )
7«2_741 ’
P2F (r, (7 =)k, (= 2 (= r2)rd),, )
X = 1 2
rt—r

x?

riFy (’1”2, (r2 —rHr2 (r?2 —rH)((r? - 7“1)7“2)x) -
5 )

r
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VI 2-Component Systems

We now examine symmetry classes of 2-component hyperbolic systems. This is the case
n = 2. All 2-component hyperbolic symmetry classes are diagonalizable and complete.
A hyperbolic symmetry class is characterized by its characteristic distributions and its
symmetry forms ¥ = Q! IT = Q2. The sum Q = IT + ¥ of the symmetry forms is the
total form of the class, and a hyperbolic class is exact if its total form is exact. If XY are
tangent to the characteristic distributions and E,Y are the dual 1-forms then the class
consists of the systems u; + Au, = 0 with tensors

A=) XQE+uYR®Y

such that < v
= A A—p

[

Proposition 6.1 A hyperbolic symmetry class is exact if and only if it contains a system
with characteristic speeds of equal magnitude and opposite sign. The system is unique,
up to constant multiple, and is called the canonical representative.

Proof Ifu=—\then

X\ _ YA

where ' = % In |\|. Conversely, if @ = dF for some function F then
A=X@E-'Y®Y
is the tensor of a system in the class. O

The symbols r, s are used exclusively to denote Riemann coordinates, in which the sym-
metry forms are
IT = adr, W = bds, (6.1)

the total form is
Q =adr+bds, (6.2)

and the symmetry class consists of the simple systems
e+ Ar, =0, St + sy =0,
where A, i is a solution of
wr = a(r,s)(p—N), As = b(r, s) (A — ).

The solution space of the latter system is parametrized by two arbitrary functions of a
single variable, for any a, b.

The Hamiltonian structures of the hyperbolic symmetry class with Riemann coor-
dinates 7, s, symmetry forms (6.1), and total form (6.2) are generated by the Poisson
bivectors with flat metrics

gdr? + hds*
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such that
(In|h|), = —2a, (Inlg]), = —20, (6.3)

as in Theorem 4.2.

Proposition 6.2 A hyperbolic Hamiltonian symmetry class is exact if and only if there
exist Riemann coordinates which are isothermal for the metric of the Poisson bivector.

P r oo f If the coordinates are isothermal, so that

lg| = || = 7"
for some function F, then the conditions (6.3) imply @ = dF. Conversely if the class is
exact then

a=F,, b=F,

for some function F, so that

efQF efQF

=50 "

for some functions p, ¢, by (6.3). Then the Riemann coordinates

i) = [ IR s(s) = [ laGsl R
are isothermal. O

Proposition 6.3 An exact symmetry class with total form 2 = dF' is Hamiltonian if
and only if there are Riemann coordinates r, s such that

F,.. £ Fss =0, (6.4)
in which case the class is Hamiltonian with respect to the Poisson bivector with flat metric

e 2F (dr® + ds?). (6.5)

P r o of If the class is Hamiltonian then the metric of the bivector is (6.5) in iso-
thermal Riemann coordinates, by (6.3). Hence (6.4) holds, because the metric is flat.
Conversely, if (6.4) holds then the metric (6.5) is flat. This metric also satisfies the
conditions (6.3), so the class is Hamiltonian with respect to the associated bivector. O

Note that this does not exclude the possibility that the exact class is also Hamiltonian
with respect to other bivectors. See Theorem 6.5.

A 2-component hyperbolic symmetry class is nondegenerate if its symmetry forms
are nonzero. The characteristic distributions are then given by the symmetry forms.
The symmetry coframe provides a local one-to-one correspondence between nondegerate
classes and coframes on R?. See Gardner [14] for details of the equivalence method.
Only the following facts are needed here. Coframes are equivalent if they are related by
a diffecomorphism. An equivalence identifies the characteristic distributions, hence the
Riemann coordinates of the symmetry classes. An equivalence may therefore be viewed as
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a change of Riemann coordinates. A vector field W is an infinitesimal automorphism of a
coframe if its flow is a 1-parameter family of self-equivalences, which holds if and only if

LwlIl = LwW¥ = 0.
The automorphisms are the vector fields with Riemann coordinate description
W = f(r)0; + g(s)0s

such that
LwQ =0.

The structure equations of a coframe (g) are
dlIl =1 ¥ ATI, dVv =JIINW,

where the functions I, J are the zeroth order invariants. The symmetry class is exact if
and only if I = J. The first order invariants are the functions Iy, I, Jp, Jo defined by

dl =5L1II+ 1,9, dJ =111+ J, 0.

Higher order invariants are defined analogously. Generic coframes are locally equivalent if
and only if their invariants satisfy the same functional relations. The rank of a coframe is
the number of functionally independent invariants. The dimension of the automorphism
algebra of a coframe is equal to the codimension of the rank, e.g., the automorphism
algebra of a rank 0 coframe is 2-dimensional. Proposition 6.4 is given here as an example
of a coframe invariant. The result is used in Theorem 6.5.

Proposition 6.4 The Gaussian curvature of the metric II? + W2 defined by a cofra-
me (g) is

K=—(I+J + I+ J%.
Proof IfIl=adr, ¥ =bds then

_ % b

dIl = = ¥ NI, d¥ = Z TN,
ab ab
hence b
as r
I =— = —.
ab’ ab

The Gaussian curvature of the metric a? dr? + b2 ds? is

Rmun}<%)_1<@>_1%%_1®@ Llasbh,  1arb
a2 b2 \a /), aZ\b

aa abb bab daabd

1 /a 1/b as a b b
N _ - _sIs T (] 72 2
b (ab)s a (ab)r abab abab (L + 1+ 174 J5),

using (4.12). O
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In the case n = 2, a 1-weight Poisson bivector is either definite or indefinite, i.e., the
corresponding flat metric on U/ is definite or indefinite. A definite bivector is described in
appropriate Darboux coordinates u, v by the operator

D 0
D= .
( 0 Dw> ’
and the Hamiltonian system generated by a function H (u,v) is
()= G ) ()
v/, H,, Hy, v/,
Theorem 6.1 The total form of the hyperbolic Hamiltonian system
u\ [ Hyw Hyy U
<v>t_(Huv va) (U)m7 Hu #0,
P,du— P,dv p_ Hyyw — Hyy

2P2+1) 2H.,,

The symmetry class of the system is exact if and only if

18
0 =

(tan™' P),, + (tan™' P),, = 0.
The class is nondegenerate if and only if
PP, —2PP,P,— P,P, # 0,
in which case the zeroth order invariants of the coframe are

tan~! P),, + (tan~' P),,
p,P,—-2PP,P,— P,P, ’

[—J=apr+1)t

1 1
s (PP+1)77,, —(PP+1)77 N 24PP,P, — 8(P% 4+ 1)P,,

I+J=4(P>+1 )
+ (P7+1) p,P,—2PP,P, — P,P, pP,P,—2PP,P, — P,P,

P roof A tedious but direct calculation. See Doyle [15]. O

The symmetry class is exact if and only if P = f1/fs for some holomorphic function
fi(u,v) —ifa(u,v), in which case

An indefinite bivector is described in appropriate Darboux coordinates u,v by the

operator
(0 D,
p=(p v):
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and the Hamiltonian system generated by a function H(u,v) is
U Hy,, Hy ) < U )
= ) 6.6
( v )t < Hyw Huw V) ( )
Theorem 6.2 The total form of the hyperbolic Hamiltonian system

u — Huv Hm; u
<v)t_<Huu Huv) (fl})w’ Hy, Hyp > 0,

Pu du — Pv dv P Huu
2P ’ ~\ Hy,'

18

Q=

The symmetry class of the system is exact if and only if
(InP),, =0.
The class is nondegenerate if and only if
pp~t, P, £ P PP,
in which case the zeroth order invariants of the coframe are

8(InP),, g AP = Py)

I—J= :
pP-ipp,— pp-1,p1,’ p-1p,P,— PP, P71,

P r oo f Again, a tedious calculation. See Doyle [15]. O

The symmetry class is exact if and only if P = mj/mg for some functions m;j(u),

ma(v) > 0, in which case
w\ (0 mf U
v), \mZ 0 v/,

is the canonical representative. If the class is nondegenerate then the zeroth order invariant
is
1 1 " 1 1 "

CS{ESEEn Eg

Example 6.1 The elasticity equation

Yy = m(¢m)2¢xx

with propagation speed m > 0 is equivalent to

(3).= (a2 0) (0). (6.7
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via u = 1, v = 1. The system (6.7) is a hyperbolic Hamiltonian system (6.6), with
H(u,v) = M(u) + %v2, M" = m?, and is the canonical representative of its symmetry

class. The system
U v u u
) G 0) (0), =0 03

describes the dynamics of a 1-dimensional isentropic gas. The field variables u, v denote the
density and velocity of the gas, and the propagation speed is n(u) > 0. The system (6.8)
is a hyperbolic Hamiltonian system (6.6), with H(u,v) = —N(u) — 2uv?, N” = n?/u. The
systems (6.7), (6.8) are symmetries if and only if n? = u?m?. The function which describes
the symmetry structure is P = m. The symmetry class is exact, and is nondegenerate if
and only if m’ # 0, in which case the zeroth order invariant is

m ()
() (i)

If I is constant, then this equation can be solved for m :

I=-2

T#-2 = m=(cute) 20+,
I=-2 : m = exp (c1u + c2).

The polytropic gas dynamics systems thus correspond to the case of a constant invariant
I1#-2. O

The symmetry forms of a nondegenerate exact symmetry class with total form € = dF
are Il = F,. dr, ¥ = F;ds, in Riemann coordinates r, s, where F., Fx # 0. The zeroth order
invariant is

I = F'rs ’
F.F,
and the first order invariants are
I, I
L = — I =—.
1 7 2 F.
There are three generic possibilities:
rank 0 : dl =0,
rank 1 : dl #£0, dli ANdl =dls NdI =0,
rank 2 : dly Ndl #£0 or dls NdI #0.

The automorphisms are the vector fields
W = f(r)ar + g(s)as

such that
LwdF =0,
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ie.,

d(Lw F) = 0.

Theorem 6.3 The first order conserved densities for the canonical representative of a
nondegenerate exact symmetry class correspond to the infinitesimal automorphisms of the
coframe of the class.

P r o of The canonical system is
T’t+€2F7’x:0, st — e s, = 0.
Compare Example 5.1. O

We now use the automorphisms to extract the normal forms for the rank 0 and rank 1
exact symmetry classes. Suppose that the coframe has a nonzero automorphism

(f(r)dr + g(s)0s)F = c,
where c is constant. If f =0 or g =0 then F,s =0, i.e., [ =0. If f,g # 0 then
(0, + 0)F = 2,

F(r,s) =®(r—s) +c(r+s)

in suitable Riemann coordinates. In these coordinates, I, I7, Is are functions of » — s, hence
the coframe has rank 0 or rank 1. The coframe has rank 0 if and only if I is constant. If
I =0 then F,; = 0. This implies

F(r,s)=r—s

in suitable Riemann coordinates. In these coordinates, the automorphism algebra is the
2-dimensional abelian algebra of constant vector fields, reflecting the invariance of

Q=dr—ds
under arbitrary translations of r,s. If I = —1/¢ then (ef/¢) , = 0. This implies
F(r,s)=eln|r —s|

in suitable Riemann coordinates. In these coordinates, the automorphism algebra is the
2-dimensional nonabelian algebra spanned by the vector fields r 0, + s 0, 9, 4 0s, reflecting
the invariance of

Q=_"

(dr — ds)

r—s
under dilations and equal translations of r;s. If dI A & = 0, then the higher order

invariants are also functionally dependent on F) so the coframe has rank 0 or rank 1. Note
that dI A € = 0 if and only if I; = I, because

dINQ= ([ — 1) IIANW.
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The condition I; = I, is equivalent to

FTST’ F’I"SF’I‘T‘ FS’I’S FST’FSS

F, F2?2 L, F2

)
TS

(f(r)0r + g(s)0s)F =0
for some f, g # 0, which holds if and only if

or
T

([
n
F

s

or

(ar + as)F =0,

or
F(r,s) =®(r—s)
in suitable Riemann coordinates. In these coordinates, the automorphism 0, +3ds represents
the invariance of
Q=& (r —s)(dr — ds)

under equal translations of r,s. There is an independent automorphism if and only if

for some f # g, in which case

I= _f, = _gla
so that I is constant, i.e., the coframe has rank 0. Finally, suppose that the coframe has
rank 1, and that dIAQ # 0, i.e., [ # I>. If I, = 0 then Iy # 0. Therefore 15, = 0, because
dIy NdI = 0. But then F,.; = 0, contradicting dI # 0. This proves I # 0; similarly Is # 0.
The conditions dIy A dI = dIx AdI = 0 imply

L =h(I), Iy=k(1), (6.9)

and the argument just given shows h # 0, k # 0. Fix H, K such that H' =1/h, K' = 1/k.
Then
H(), =F,, K()s=F,,

so that
H(I)=F+g(s), K(I)=F+ f(r). (6.10)
The condition dI A dF # 0 implies f' # 0, ¢’ # 0. Differentiating (6.10) gives
F. ! F !
h:ﬂﬂ(ij“ﬁ, b:mn(tf“». (6.11)

The conditions (6.9), (6.11) imply

(B0 (Bad))

F, F
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or ) .
—0, + 8s> F=-1,
(f’(?“) g'(s)
so that
() + 05)F =2,
or

F(r,s)=®(r—s)+r+s

in suitable Riemann coordinates. In these coordinates, the automorphism 0, +3ds represents

the invariance of
Q= (r —s)(dr — ds) +dr +ds

under equal translations of r, s. There is an independent automorphism if and only if
fr)(1+@'(r—s)) +g(s)(1 - (r—s)) =0

for some nonzero functions f # g. This implies

But then P ,
g

I = — =
2f  2¢°
so that I is constant, contradicting dI # 0.

Theorem 6.4 A nondegenerate exact symmetry class with rank 0 or rank 1 coframe is
generically equivalent to one of the normal forms

rank 0, I/ =0 : Q =dr —ds, (6.12a)
rank 0, I = — X Q= £ (dr—ds), (6.12b)
"
rank 1, L =T, Q= o(r—s)(dr — ds), (é) £0, (6.12¢)
rank 1, 1 # I : Q = ¢(r —s)(dr —ds) +dr + ds, (6.12d)
"
(m gjr 1 ) £0,

where 1, s are Riemann coordinates. Two coframes (6.12c¢) defined by functions qﬁ,gg are
equivalent if and only if 3
o(y) = co(cy +d) (6.13)

for some constants ¢ # 0 and d. Two coframes (6.12d) defined by functions b, ¢ are
equivalent if and only if

o(y) = d(y +d) (6.14)

for some constant d. There are no other redundancies in (6.12).
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Pr oo f It has already been shown that each rank 0 or rank 1 exact symmetry
class is generically equivalent to one of the normal forms (6.12). A coframe (6.12) is
exact, and has rank 0 or rank 1, because all of its invariants are functions of » — s. The
coframes (6.12a,b) are not equivalent, because they have distinct constant zeroth order
invariants. The condition (1/¢)"” # 0 ensures that (6.12c) has rank 1. The condition
(In]¢ —1/¢ 4+ 1|)" # 0 ensures that the invariants of (6.12d) satisfy I; # I>. Now, assume
that the coframes

I = ¢r—s)dr I = ¢F—3)dF
(xp = —¢(r—s)d8> 7 (\'I? = —é(f—@dé)
are equivalent via
i.e.,

Then B
P(r —s)r'(F) = ¢(F = 3),  ¢(r —s)s'(3) = o(F — 3).

This implies 7’ = §’, so that
r=cr+dj, s =c5+do,

and

cop(r —s) = (7 — 3).

Therefore (6.13) holds. Conversely, (6.13) implies that the coframes (6.12c) defined by
¢, ¢ are equivalent. Finally, assume that the coframes

(H = (1+¢(r—s))dr> (1
T = (1—o(r—s)ds)

and

(ﬁ - (1+<5(f§))df)

U = (1-¢(F—3)ds

are equivalent via

ie., e ﬁ’ o s
Then -
(L+o(r—s))r'(F) = 1+¢(7—3),
. (6.15)
(1=9¢(r—s))s'(5) = 1-9¢(7-3),
so that

1+ o(r—s))r' + (1 —¢(r —s))s’ =2. (6.16)
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If ' # &' then differentiating (6.16) by 7, § implies

(nl((r =)+ D =)= (nl(@(r =) = (' = )])_ =0,

hence
((r—s) =1 =)= f(F),  (6(r—s)+ 1" =) =3(3),
N o1y, f0)
(¢%—1>(r ) g9(s)’
so that N
(wf55]) -0

contradicting the contrary assumption. Therefore 7’ = s’, or
T:f—}—dl, S:§+d2,

because of (6.16). The relation (6.14) now follows from (6.15). Conversely, (6.14) implies
that the coframes (6.12d) defined by ¢, ¢ are equivalent. 0O

Corollary A nondegenerate exact symmetry class with rank 0 or rank 1 coframe has
(generically) an indefinite Hamiltonian structure.

P r o of This follows from Theorem 6.4 and Proposition 6.3. O

The automorphisms of the normal forms were described in the discussion leading to The-
orem 6.4. The first order conservation laws for the canonical systems are now provided
by Theorem 6.3. The canonical representative of the symmetry class (6.12a) has two
independent first order conservation laws

2(s—r) 1
=" X =" 4z
Ty Ty
and 2(smr)
S—T 1
T=-S""  X= 44
Sy Sy

The canonical representative of the the symmetry class (6.12b) also has two independent
first order conservation laws

1 1

Tz Sz

and
T:(rs)_%(rs), X=" 42 e

Tx Sy

The canonical representative of the symmetry class (6.12¢) has one first order conservation

law
pocmea (L) 11
Ty Sy Ty Sx
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and the canonical representative of the symmetry class (6.12d) has one first order conser-

vation law
T = 6—2(<I>(r—s)+r+s) <1 — 1> s X = i —|— i — 8(13,

Ty Sy Tx Sx

where @' = ¢.

A nondegenerate exact symmetry class with total form Q = dF' is simple if dINQ = 0,
i.e., I1 = I5. The normal forms for the simple classes are (6.12a,b,c). The following
arguments show that the simple classes are the elasticity/gas dynamics classes of Example
6.1.

Example 6.2 If the function P which describes the symmetry structure of a nonde-
generate class of hyperbolic Hamiltonian systems (6.6) has the form P = P(u) then
the class is an elasticity/gas dynamics class with canonical representative (6.7), where
m = P. Conversely, the function P of the elasticity/gas dynamics class with canonical
representative (6.7) has the form P = P(u). The total form is

P/
Q = ﬁ d'LL,

and the zeroth order invariant is

hence the class is simple. The case P = P(v) reduces to the previous case by interchange
of u,v. O

There are Riemann coordinates r, s in which
F(r,s) =®(r —s),

so that
Q = ¢(r — s)(dr — ds),

where ¢ = ®'. The symmetry class consists of the simple systems
re+Ary =0, st+pusy; =0,
where A, i is a solution of
As=—=¢(r—s)(A=p), pr=0(r—s)(p—2A). (6.17)

The solutions of (6.17) are A = f,., u = fs, where f satisfies the Euler-Poisson-Darboux
equation

foz = fyy = 20(y) fy, (6.18)

where y = r — s, z = r + s. The Riemann coordinates in which € has the prescribed form
are unique up to independent translations, equal dilations, and interchange. If

Q = ¢(7 — 3)(dF — d3)
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then f satisfies (6.18) if and only if

fzz = f35 — 20(9) f3,

where §y = 7 — 5, Z = 7 + 5. Moreover, f,. = 0 if and only if f;: = 0. Hence there
is an intrinsic space of systems generated by the solutions of (6.18) with the form f =
f1(y) + f2(z). This space is 3-dimensional. The solutions f = z and f = [Y 22 gy
produce the translation generator and the canonical system, and the solution

1 1 Y ! y/ "
f — Z 22 + 5/ €2<I>(y )/ 6—2@(3; )dy// dy/

produces the system
T+ (%(7‘—1—8) +v(r — s)) rz = 0,
(6.19)
st + (%(rJrs) —v(r— 8)) se = 0,

where ) y
v(y) = 562‘1’(11)/ e 22W) gy’

The symmetry class is Hamiltonian with respect to the Poisson bivector with flat metric
e 2F(dr? — ds?),
by Proposition 6.3. The coordinates in which the bivector is described by the operator
0 D,
D =
D, 0

u=au+bv, v=cu+dv,

are

where

irs) = [ e 0y, (s =

and where a, b, ¢, d are constants such that ad # bc, and

(a C) (O 1) (a b) (O 1)
b d 1 0 c d 1 0
This implies F' = F(u) or F' = F(v). But then P = P(u) or P = P(v), as in Example

6.2. This proves that every simple class is an elasticity /gas dynamics class. The system
(6.19) is described in the coordinates u = @, v = v by the gas dynamics system (6.8), with

n(u) = v((r —s)(u)).
Example 6.3 The system
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is a hyperbolic Hamiltonian system (6.6). The symmetry class is exact and nondegenerate.
The zeroth order invariant is I = 0, so the class is simple. However, P = 2v/u is neither
a function of u only nor of v only. O

Comparison of Examples 6.2 and 6.3 may seem to contradict the claim that each simple
class is an elasticity /gas dynamics class. The symmetry class of Example 6.3 has a sec-
ond Hamiltonian structure, however, and assumes the form of Example 6.2 in Darboux
coordinates for the second Poisson bivector.

Theorem 6.5 A simple symmetry class is multi-Hamiltonian if and only if the metric
of its coframe has constant Gaussian curvature K, in which case the space of Poisson
bivectors for the class is 3-dimensional. Fach simple tri-Hamiltonian symmetry class is
equivalent to one and only one of the normal forms

K=0,I=0 o Q=dr—ds, (6.20a)
K=0,1>0 o Q=¢€""%(dr —ds), (6.20b)
K=0,1<0 o Q=" (dr —ds), (6.20c)
K:—E%, I=-1 . Q=5 (dr—ds), (6.20d)
K:—g%, r'-o : Q= m (dr — ds), £>0, (6.20¢)
K:—g%, I'<0,I>0 sz (dr —ds), e<0, (6.20f)
K:—E%, I'<0,I<0 sz (dr —ds), >0, (6.20g)
K = 6% . Q= m (dr —ds), >0, (6.20h)

where r, s are Riemann coordinates, and I' is the first order invariant.

P r oo f The zeroth order invariant of the class is

I(r,s) = — (;)l(r —s),

and the common value of the first order invariants is

I(rs) = — (; (;>”> (r—s). (6.21)

The Gaussian curvature is K = —2(I' + I?), by Proposition 6.4, or

T ) LA

The curvature is constant if and only if

) o
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GG -GG -566))

The Poisson bivectors which generate the Hamiltonian structure of the class correspond
to the flat metrics
_op [ dr? ds?
e ——4+—,
p(r)  q(s)

by (6.3). (From (4.15), such a metric is flat if and only if

because

20F,, +p'F, +2qFs + ¢ Fy, =0, (6.24)
or
(p+49)9), = (p+ Do), (6.25)
i.e., if and only if
_ P(r+s)
p(?") + Q(s) - (Zs(T' o S)

for some function v(z). The solution p = 1, ¢ = —1, 1) = 0 corresponds to the indefinite
Hamiltonian structure provided by Proposition 6.3. There is a solution p, ¢ to (6.24) with
p + q # 0 if and only if there is a non-zero function v such that

(=), -

<¢ (;)) (r—s) = (i} ¢”> (r+ ), (6.27)

which is the case if and only if
1 "
o(5) =
¢

for some constant s, i.e. if and only if (6.23) holds. Then (6.27) implies

P =K,

or

so there is a 2-dimensional space of solutions 1 to (6.26). There is thus a 2-dimensional
space of solutions p + ¢ = ¥ /¢ to (6.25), and a 3-dimensional space of solutions p, g to

(6.24). If Kk = 0 then
1
P(y) = m,

in which case the invariant of the corresponding coframe is constant, so the normal forms
are (6.20a,d), as in Theorem 6.4. If k < 0 then

1

P(y) = m,

where k? = —k, and the coframe is equivalent to (6.20e), by Theorem 6.4. If x > 0 then

By) = ce,
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or .
o) = csinh(ky + 9)
or
_ 1
) = ccosh (ky + )’

where k% = k, and the coframe is equivalent to one of (6.20b,c,f,g,h), by Theorem 6.4. The
values of I’, K in (6.20) follow from (6.21), (6.22). Note that these imply that the listed
normal forms are inequivalent. O

The tri-Hamiltonian structure of the rank 0 exact symmetry classes was first described by
Nutku [6].

Only first order Poisson operators (2.5) have been considered thus far in our analysis
of the Hamiltonian structure of quasilinear systems. The Hamiltonian structure of 2-
component systems with respect to third order Poisson operators was studied by Olver
and Nutku [7]. Theorem 6.6 is one of their results, given here in invariant form.

Theorem 6.6 All of the systems of an exact hyperbolic symmetry class with indefinite
Hamiltonian structure are also Hamiltonian with respect to a third order Poisson bivector.
The first and third order bivectors are compatible.

P r o o f The Darboux coordinate description of exactness given in Theorem 6.2 is the
separability criterion of Olver and Nutku [7]. O

If the symmetry class is simple and tri-Hamiltonian then there is an open set of indefinite
Poisson bivectors in the relevant 3-dimensional space. To each of these there corresponds
a compatible third order Poisson bivector, with respect to which the symmetry class is
Hamiltonian. This generalizes the results of Arik, et al. [10].

VII Remarks

It might be interesting to have an invariant description of the quasilinear systems which
are Hamiltonian. This is equivalent to giving an invariant characterization of the (1,1)-
tensors on R™ which are Hessian with respect to some flat metric, a problem which is
unsolved even in the case n = 2. Further study of the invariants of the symmetry coframes
of nondegenerate symmetry classes may prove worthwhile. Finally, it may be possible
to extend Theorem 6.6 to exact hyperbolic symmetry classes with definite Hamiltonian
structure.
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