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Abstract

The family of simple quasilinear systems in one space variable is partitioned into
classes of commuting flows, i.e., symmetry classes. The systems in a symmetry class
have the same zeroth order conserved densities and the same Hamiltonian structure.
The zeroth and first order conservation laws and the Hamiltonian structure of the
systems in a complete symmetry class are described. If such a system has a de-
generate characteristic speed, then it has conservation laws of arbitrarily high order.
Symmetry classes of 2-component hyperbolic systems correspond to coframes on the
plane. The invariants of 2-component Hamiltonian hyperbolic symmetry classes are
given. An exact symmetry class of 2-component hyperbolic systems is characterized
by its canonical representative, and the first order conservation laws of the canonical
system correspond to the infinitesimal automorphisms of the coframe. The normal
forms of the rank 0 and rank 1 exact classes are listed. A simple symmetry class is
tri-Hamiltonian if and only if the metric of its coframe has constant curvature. The
normal forms of the tri-Hamiltonian simple classes are listed.

I Introduction

There are many physical systems which are mathematically approximated by first order
quasilinear evolution equations. Hyperbolic equations of this type are associated with wave
propagation. The symmetry structure, conservation laws, and Hamiltonian structure of
first order hyperbolic quasilinear systems in one space variable have been recently studied
by Verosky [1–3], Tsarev [4, 5], Nutku [6], Olver and Nutku [7], Serre [8, 9], and Arik, et
al.[10]. Their results are unified and extended here.

Section II is an outline of the necessary geometric formalism. It is shown in Sec-
tion III that the family of simple quasilinear systems is partitioned into symmetry classes.
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A symmetry class is a collection of commuting flows. The systems in a class have the
same zeroth order conserved densities. Dubrovin and Novikov [11] discovered that each
flat metric on the space of field variables intrinsically defines a Poisson bivector. The
simplest Hamiltonian systems generated by such a bivector are quasilinear. The systems
in a symmetry class have the same Hamiltonian structure.

Complete symmetry classes are discussed in Section IV. These are infinite dimensional
spaces of diagonalizable systems. The space of conserved densities for the systems in a com-
plete class is also infinite dimensional. These systems are the simplest higher dimensional
generalization of 2-component hyperbolic systems. The determination of the Hamiltonian
structure of a complete symmetry class is reduced to the solvability of a system of linear
equations. This implies that multiple Hamiltonian formulations are compatible. An exam-
ple from gas dynamics is used to illustrate the theory. The first order conserved densities
of the systems in a complete symmetry class are characterized in Section V. Systems with
degenerate characteristic speeds are shown to have conserved densities of arbitrarily high
order. The Born-Infeld equation is an example.

Symmetry classes of 2-component hyperbolic systems are studied in Section VI. There
is a natural local correspondence between these classes and coframes on the plane. Dy-
namical properties of the systems in a class are thereby related to geometric features of the
corresponding coframe. A surface metric is either definite or indefinite, so there are two
local canonical forms for 2-component Hamiltonian quasilinear systems. The invariants of
hyperbolic Hamiltonian symmetry classes in canonical form are presented. In particular,
the separability condition of Olver and Nutku [7] is shown to be equivalent to the invariant
condition of exactness. An exact symmetry class is characterized by its canonical repre-
sentative, and the first order conservation laws of this system correspond naturally to the
infinitesimal automorphisms of the related coframe. The existence of an automorphism
permits the derivation of the normal forms of rank 0 and rank 1 exact symmetry classes.
Most elementary of all are the simple symmetry classes. Each of these contains an elas-
ticity system and an isentropic gas dynamics system, and the propagation speeds of these
systems are related to the invariants of the coframe. For example, polytropy is equivalent
to the condition that the coframe have rank 0. The tri-Hamiltonian structure of the poly-
tropic gas dynamics systems was discovered by Nutku [6]. That discovery is generalized
here. It is proved that a simple symmetry class has multi-Hamiltonian structure if and
only if the metric defined by the coframe of the class has constant curvature, in which case
the class is tri-Hamiltonian. The normal forms for the tri-Hamiltonian simple classes are
listed. The paper concludes with the remarks of Section VII.

II Geometric Formalism

The geometric context for this work is outlined here. Further details can be found in Olver
[12], Doyle [13], and references therein. A coordinate x on X ⊂ R is a space variable, and
coordinates u1, . . . , un on U ⊂ Rn are field variables. A phase is a map X 7−→ U , i.e., an
n-tuple u(x) of functions u1(x), . . . , un(x). An evolutionary vector field is the infinitesimal
generator of a flow on the phase space. The coordinate representation of an evolutionary
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vector field is
V = Qα ∂uα , (2.1)

where Q1[u], . . . , Qn[u] are differential functions, i.e., smooth functions of x and of a finite
number of the derivative coordinates uα

j = djuα/dxj . A trajectory of the vector field is an
n-tuple u(x, t) which satisfies the differential constraints

uα
t = Qα[u].

The directional derivative of a differential function F [u] along the vector field (2.1) has
the coordinate description

VF =
∑

(DjQ
α)
∂F

∂uα
j

,

where
Dj = (Dx)j ,

and
Dx =

∑
uα

j+1 ∂uα
j

is the total derivative with respect to x. Evolutionary derivations commute with total
derivatives, i.e.,

V (DxF ) = Dx(VF )

for all differential functions F. The Lie bracket of evolutionary vector fields

V = Qα ∂uα , W = Rα ∂uα

is the evolutionary vector field

[V,W] = Sα ∂uα , Sα = VRα −WQα.

The Lie bracket is formally equivalent to differentiating W along the flow of V, via pull-
back. Also,

[V,W]F = V (WF )−W (VF ).

The evolutionary vector fields V,W are symmetries of one another if [V,W] = 0. This
infinitesimal criterion is formally equivalent to the requirement that the flow of V carry
trajectories of W onto new trajectories of W.

A density is a horizontal 1-form F [u] dx. The total differential of a differential func-
tion F is the density (DxF ) dx. The action of evolutionary vector fields on densities is

V (F dx) = VF dx.

A functional is the formal integral over X of a density. Algebraically, the linear space of
functionals is the space of densities modulo the space of total differentials. The action of
evolutionary vector fields on densities factors to an action

V
∫
F dx =

∫
VF dx
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of evolutionary vector fields on functionals. In physical terms, functionals are the dy-
namical variables of an evolutionary system. A conservation law for the system V is a
functional

∫
T dx such that

V
∫
T dx = 0. (2.2)

The condition (2.2) is formally equivalent to the requirement that the functional be con-
stant along the trajectories of V. Note that (2.2) holds if and only if there is a differential
function X such that

VT + DxX = 0. (2.3)

This implies
∂

∂t
(T [u]) +

∂

∂x
(X[u]) = 0

whenever u(x, t) is a trajectory of V, in which case

d

dt

∫ b

a
T [u](x, t) dx = X[u](a, t)−X[u](b, t)

for any interval [a, b], so that the time rate of change of the total quantity of T [u] enclosed
in a spatial region is equal to the amount of X[u] flowing into the region. The densities
T dx and X dx are the conserved density and the flux of the conservation law. The space
variable x is fixed for the duration, so it will be convenient to refer simply to the functions
T and X as the conserved density and flux.

The tensor calculus of finite dimensional differential geometry generalizes to functional
tensor calculus. The objects dual to evolutionary vector fields are functional 1-forms. The
coordinate representation of a functional 1-form is

Ω =
∫
Rα du

α dx, (2.4)

where R1, . . . , Rn are unique differential functions. The contraction of the 1-form (2.4)
with the vector field (2.1) is the functional

〈Ω,V〉 =
∫
RαQ

α dx.

The variational differential of a functional
∫
F dx is the unique functional 1-form δ

∫
F dx

such that 〈
δ

∫
F dx,V

〉
= V

∫
F dx

for all evolutionary vector fields V. Formal integration by parts proves

δ

∫
F dx =

∫
δF

δuα
duα dx,

where
δ

δuα
=
∑

(−1)j Dj ◦ ∂uα
j
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is the αth variational derivative. Note that

δ

δuα
(DxF ) = 0

for any differential function F. Conversely, a differential function with variational deriva-
tives equal to zero is locally equal to a total derivative.

See Doyle [13] for a thorough discussion of differential geometric bivectors. Only
the following abbreviated version is needed here. A nondegenerate 1-weight differential
geometric Poisson bivector Θ is described in coordinates by a Poisson operator

Dαβ = gαβ(u) Dx + bαβ
γ (u)uγ

x, (2.5)

where g is symmetric, det g 6= 0,

∂gαβ

∂uγ
= bαβ

γ + bβα
γ , (2.6)

and the connection ∇ on U with coefficients

Γγ
αβ = −bλγ

α gλβ (2.7)

is symmetric and integrable. The notation ux = u1 is used here. These conditions on the
operator (2.5) ensure that the bracket{∫

F dx,

∫
Gdx

}
=
〈
Θ; δ

∫
F dx, δ

∫
Gdx

〉
=
∫

δF

δuα
Dαβ δG

δuβ
dx

is skew-symmetric and satisfies the Jacobi identity

©
{{∫

F dx,

∫
Gdx

}
,

∫
H dx

}
= 0, (2.8)

where the notation indicates cyclic summation. Note that (2.6), (2.7) imply that ∇ is the
Levi-Civita connection for the flat metric

g = gαβ du
α ⊗ duβ. (2.9)

A functional H =
∫
H dx generates a Hamiltonian evolutionary vector field XH such

that
XH

∫
F dx =

{∫
F dx,

∫
H dx

}
(2.10)

for all functionals
∫
F dx. In coordinates,

XH = Qα ∂uα , Qα = Dαβ δH

δuβ
. (2.11)

In physical terms, the generating functional is the energy of the Hamiltonian system. The
conservation laws for a Hamiltonian system XH are the functionals

∫
F dx such that{∫

F dx,

∫
H dx

}
= 0, (2.12)



230 Ph.W.DOYLE

because of (2.10). For example
∫
H dx is a conservation law for XH, i.e., the energy of a

Hamiltonian system is conserved. The Jacobi identity (2.8) implies that the map

H 7−→ −XH

is a Lie algebra homomorphism from the space of functionals to the space of evolutionary
vector fields. Hence if F =

∫
F dx satisfies (2.12) then

[XF ,XH] = 0,

so that the conservation laws for a Hamiltonian system generate symmetries of the system.

A functional F is a Casimir of the bivector if XF = 0, in which case F is a conservation
law for any Hamiltonian system. The densities of the Casimirs of the Poisson bivector
Θ described in coordinates by the operator (2.5) are the exponential coordinates of the
flat metric (2.9) (modulo total derivatives). These are called Darboux coordinates for Θ,
because Θ is described in these coordinates by the constant coefficient Poisson operator

D = εDx,

where ε is a constant, invertible, symmetric matrix. In appropriate Darboux coordinates,
the matrix ε is diagonal with diagonal entries equal to ±1.

III Symmetry Classes of Quasilinear Systems

Consider a system of partial differential equations

uα
t +Aα

β(u)uβ
x = 0, α = 1, . . . , n. (3.1)

It is described in field variables ũ1, . . . , ũn by the equations

ũα
t + Ãα

β(ũ)ũβ
x = 0, Ãα

β =
∂ũα

∂uγ

∂uη

∂ũβ
Aγ

η .

Hence the (1,1)-tensor
A = Aα

β ∂uα ⊗ duβ

on U is intrinsically associated with the system, which therefore has the geometric descrip-
tion

ut + Aux = 0. (3.2)

Systems of type (3.2) are quasilinear. A quasilinear system is simple if the characteristic
polynomial of its tensor is simple, and is semisimple if the minimal polynomial of its tensor
is simple.

For example, the quasilinear system associated with a Hessian tensor

A = −∇2H,
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where ∇ is the Levi-Civita connection of a semiRiemannian metric on U and H(u) is a
function on U , is

ut = ∇2H ux = ∇ux∇H.

This equation states that the vector which describes the instantaneous evolution of a phase
u(x) is the covariant derivative of ∇H along u(x). A Hessian tensor is self-adjoint with
respect to the relevant metric. The Hessian systems generated by a definite metric are
therefore semisimple.

The evolutionary vector field which represents the quasilinear system (3.2) is

V = Qα ∂uα , Qα[u] = −Aα
β(u)uβ

x.

A functional
∫
T dx is conserved along the flow of V if and only if

δ

δu
(VT ) = 0, (3.3)

by (2.3), because the space of total derivatives is locally equal to the common kernel of
the variational derivatives. If T = T (u) then the condition (3.3) is

∂

∂uγ
(T,αA

α
β) =

∂

∂uβ
(T,αA

α
γ ),

which holds if and only if
dTA = dX

for some function X(u), which is then the flux associated with the conserved density T.
A quasilinear system is a system of conservation laws if it has functionally independent
conserved densities T 1(u), . . . , Tn(u). In the coordinates u1 = T 1, . . . , un = Tn, the system
then has the form

uα
t +Xα

x = 0,

where X1(u), . . . , Xn(u) are the associated fluxes.

The Hamiltonian system (2.11) generated by the Poisson operator (2.5) and by a
functional

∫
H(u) dx has the form (3.1), where

Aα
β = −gαγH,γβ − bαγ

β H,γ = −gαγ(H,γβ − Γη
γβH,η),

i.e.,
A = −∇2H,

where ∇ is the connection (2.7) of the flat metric (2.9). Such a system is therefore Hessian.
For the duration, a quasilinear system is considered to be Hamiltonian if and only if it is
Hessian with respect to a flat metric on U . Fix Darboux coordinates in which the bivector
is described by the operator D = εDx, where ε is a diagonal matrix with diagonal entries
εα = εα = ±1. A Hamiltonian system ut = ∇2Hux is described in these coordinates by

uα
t = (εαH,α)x, (3.4)
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hence is a system of conservation laws. The conservation laws (3.4) imply the additional
conservation laws (

1
2
εα(uα)2

)
t
= (uαH,α −H)x, (3.5)

and
Ht =

(
1
2
εα(H,α)2

)
x
. (3.6)

The Hamiltonian system generated by the density T (u) = εα(uα)2/2 of the conservation
law (3.5) is the translation generator ut = ux, which is a symmetry of ut = ∇2Hux,
because the latter is independent of x. The conservation law (3.6) asserts that the integral
of the density H is conserved along its own Hamiltonian flow.

The symmetries of V are the evolutionary vector fields

W = Rα ∂uα

such that
VRα = WQα. (3.7)

For example, if Rα = Rα(u) then W is simply a vector field on U , and is a symmetry of
V if and only if

LWA = 0,

where LW is the Lie derivative. Hence there are coordinates in which the matrix rep-
resentation of A is constant if and only if there is a basis of commuting vector fields
W1, . . . ,Wn such that

LW1
A = · · · = LWn

A = 0,

i.e., (3.2) has a linear coordinate representation if and only if it has an n-dimensional
abelian algebra of zeroth order symmetries. If

W = Rα∂uα , Rα[u] = −Bα
β (u)uβ

x

is the evolutionary vector field of a second quasilinear system defined by a (1,1)-tensor B
then the symmetry conditions (3.7) are

Aα
γB

γ
β = Bα

γA
γ
β (3.8)

and(
∂Aα

β

∂uη −
∂Aα

η

∂uβ

)
Bη

γ +

(
∂Aα

γ

∂uη −
∂Aα

η

∂uγ

)
Bη

β =

(
∂Bα

β

∂uη −
∂Bα

η

∂uβ

)
Aη

γ+(
∂Bα

γ

∂uη −
∂Bα

η

∂uγ

)
Aη

β .

(3.9)

Note that (3.8) holds if and only if the tensors A and B commute.

Theorem 3.1 was proved by Verosky [3].
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Theorem 3.1 Two systems of conservation laws

uα
t +Xα

x = 0, uα
t + Y α

x = 0

are symmetries if and only if their tensors commute.

P r o o f The tensors of these systems are described in the given coordinates by the
matrices

Aα
β =

∂Xα

∂uβ
, Bα

β =
∂Y α

∂uβ
,

hence (3.9) holds. 2

Corollary Two Hamiltonian quasilinear systems generated by the same nondegenerate
1-weight Poisson bivector are symmetries if and only if their tensors commute.

P r o o f These are systems of conservation laws in Darboux coordinates for the bivec-
tor. 2

A quasilinear symmetry of a simple system is semisimple, and the tensors of the sym-
metries of a simple system commute with one another. Theorem 3.2 partitions the family
of simple systems into symmetry classes, Theorem 3.3 proves that the systems of a sym-
metry class have the same zeroth order conserved densities, and Theorem 3.4 proves that
the systems of a symmetry class have the same Hamiltonian structure.

Theorem 3.2 Symmetry is an equivalence relation on the family of simple systems.

P r o o f Fix a simple system ut +Aux = 0. Locally, there are distinct smooth complex
functions λ1, . . . , λn and nonzero complex vector fields X1, . . . ,Xn such that

AXα = λαXα.

In coordinates,
Xα = Uβ

α∂uβ , (3.10)

where U(u) is an invertible complex matrix. If A is the matrix representation of A in
these coordinates then

A = UλU−1, (3.11)

where λ is the diagonal matrix with diagonal entries λ1, . . . , λn. The structure functions
of the complex frame X1, . . . ,Xn are defined by

[Xα,Xβ ] = cγαβXγ ,

or
cγαβ = (XαU

η
β −XβU

η
α)U−1 γ

η . (3.12)

If the simple system ut + Bux = 0 is a symmetry of ut + Aux = 0 then there are distinct
functions µ1, . . . , µn such that

BXα = µαXα,

or
B = UµU−1, (3.13)
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where B(u) is the matrix representation of B and µ is the diagonal matrix with diagonal
entries µ1, . . . , µn. The quantity

∂Aζ
ξ

∂uη
−
∂Aζ

η

∂uξ

Bη
υ +

(
∂Aζ

υ

∂uη
−
∂Aζ

η

∂uυ

)
Bη

ξ

U ξ
αU

υ
βU

−1 γ
ζ

is equal to

(µα − µβ)
{
Xαλ

γ
β −Xβλ

γ
α + λγ

ηc
η
βα + (λβXαU

η
β − λαXβU

η
α)U−1 γ

η

}
,

using (3.10)–(3.13). The conditions (3.9) are therefore equivalent to

(µα − µβ)
{
Xαλ

γ
β −Xβλ

γ
α

}
− (λα − λβ)

{
Xαµ

γ
β −Xβµ

γ
α

}
={

(µα − µβ)(λγ − λβ) − (λα − λβ)(µγ − µβ)
}
cγαβ ,

or
Xβλα

λα − λβ
=

Xβµα

µα − µβ
, α 6= β (3.14)

and
λγ − λβ

λα − λβ
cγαβ =

µγ − µβ

µα − µβ
cγαβ , α, β, γ distinct. (3.15)

Therefore the conditions (3.8), (3.9) define a transitive relation on the family of simple
systems. 2

The equivalence classes of simple systems are symmetry classes. Note that the distributions
〈Xα,Xβ〉 are involutive if and only if cγαβ = 0 for γ 6= α, β, in which case (3.15) is vacuous,
e.g. if n = 2. Theorem 3.3 was proved by Serre [9].

Theorem 3.3 The systems in a symmetry class have the same zeroth order conserved
densities.

P r o o f A regular zeroth order conserved density of ut + Aux = 0 can be used as a
coordinate. The coordinate function u1 is a conserved density if and only if

∂A1
α

∂uβ
=
∂A1

β

∂uα
.

If ut + Bux = 0 is a symmetry then (3.9) implies

CA = AtC, (3.16)

where C is the skew-symmetric matrix with entries

Cαβ =
∂B1

α

∂uβ
−
∂B1

β

∂uα
.

If ut + Aux = 0 is simple then there is an invertible complex matrix U such that

U−1AU = λ,
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where λ is a diagonal matrix with distinct diagonal entries. Condition (3.16) is equivalent
to

U tCAU = U tAtCU,

or
U tCUU−1AU = U tAtU−tU tCU,

or
U tCUλ = λU tCU,

from which it follows that U tCU is diagonal. Combining this with

(U tCU)t = U tCtU = −U tCU

proves C = 0, i.e.,
∂B1

α

∂uβ
=
∂B1

β

∂uα
. 2

Note that the argument does not require the symmetry ut + Bux = 0 to be simple. See
Verosky [3] for generalizations of Theorems 3.2 and 3.3 in the case n = 2.

Theorem 3.4 The systems in a symmetry class have the same Hamiltonian structure. A
symmetry class is Hamiltonian with respect to a 1-weight Poisson bivector Θ with metric g
if and only if the Casimirs of Θ are conserved densities for the class, and the characteristic
spaces of the class are orthogonal with respect to g.

P r o o f Assume that the Casimirs of Θ are conserved densities for a semisimple system
ut + Aux = 0 , and that the characteristic spaces of A are orthogonal. If the system is
simple then a symmetry ut + Bux = 0 is semisimple, the Casimirs of Θ are conserved
densities for ut+Bux = 0, and the characteristic spaces of B are orthogonal. The bivector
is described in appropriate Darboux coordinates by the operator D = εDx, where ε is a
diagonal matrix with diagonal entries εα = εα = ±1. The matrix representation of A in
these coordinates is

Aα
β = Xα

,β

for some functions X1(u), . . . , Xn(u), because Darboux coordinates are Casimirs. The
assumptions of semisimplicity and orthogonality imply that there is a complex matrix U
such that

U tεU = I

and
A = UλU−1,

where λ is diagonal. Hence εA = εUλU tε is symmetric, i.e.,

(εαXα),β = (εβXβ),α,

so that
εαXα = −H,α

for some function H(u). Therefore

Aα
β = −εαH,αβ,
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proving that ut +Aux = 0 is Hamiltonian with respect to the bivector Θ. If the system is
simple then the same argument proves that a symmetry ut +Bux = 0 is also Hamiltonian.
Conversely, the Casimirs of Θ are conserved densities for a Hamiltonian system ut+Aux =
0, and A is Hessian, hence is self-adjoint with respect to g, so the characteristic spaces of
A are orthogonal. 2

IV Complete Symmetry Classes

A simple system is hyperbolic if its tensor has real characteristic values, which are then
smooth functions on U , called the characteristic speeds of the system. The characteristic
spaces of the tensor form a basis of 1-dimensional characteristic distributions on U . Con-
versely, fix distinct real functions λ1, . . . , λn, and independent distributions ∆1, . . . ,∆n. If
Xα is a basis for ∆α and Ξ1, . . . ,Ξn are the dual 1-forms then

A =
∑
α

λα Xα ⊗Ξα

is a (1,1)-tensor. Note that A thus defined is independent of the choice of basis, and
that the system ut + Aux = 0 is hyperbolic, with characteristic speeds λ1, . . . , λn and
characteristic distributions ∆1, . . . ,∆n. The symmetry forms

Ωα =
∑
β 6=α

Xβλα

λα − λβ
Ξβ (4.1)

are independent of the choice of basis, hence are intrinsically associated with the system.
Any simple symmetry of a hyperbolic system is also hyperbolic, and the two systems have
the same characteristic distributions. Moreover, hyperbolic systems which are symmetries
of one another have the same symmetry forms, by (3.14), so that a single set of symmetry
forms (4.1) is assigned to each hyperbolic class. A hyperbolic symmetry class is nondege-
nerate if its symmetry forms are independent, in which case they constitute the symmetry
coframe of the class. The characteristic distributions of a nondegenerate symmetry class
are determined by its symmetry coframe.

The simplest hyperbolic systems are those which can be diagonalized. A Riemann
invariant for the system ut + Aux = 0 is a real function r(u) such that

drA = λdr

for some function λ(u). If u(x, t) is a solution, and (x(t), t) is an integral curve of the
vector field

∂t − λ(u(x, t))∂x

in the x, t plane then
d

dt
r
(
u(x(t), t)

)
= 0.

In this sense, a Riemann invariant is a constant of the motion. A quasilinear system is
diagonalizable if the matrix of its tensor is diagonal in some coordinates, which are then
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Riemann invariants of the system. Conversely, a complete set of functionally indepen-
dent Riemann invariants can be used as coordinates, in which the system is diagonal.
Coordinates which diagonalize a system are called Riemann coordinates. Throughout
the discussion, the symbols r1, . . . , rn will be used exclusively to denote Riemann coordi-
nates. If ∆1, . . . ,∆n are the characteristic distributions of a hyperbolic system then the
1-codimensional distribution

∆1 ⊕ · · · ⊕ ∆̂α ⊕ · · · ⊕∆n

is involutive if and only if it is locally the kernel of the differential of a Riemann invariant.
This implies that the system is diagonalizable if and only if the distributions ∆α + ∆β

are involutive for all α, β. This condition is trivially satisfied if n = 2, so 2-component
hyperbolic systems are always diagonalizable. A symmetry of a simple diagonalizable
system is also diagonalizable, and the two systems have the same Riemann coordinates.

Theorem 4.1 Simple diagonalizable systems are symmetries if and only if they have the
same characteristic distributions and the same symmetry forms.

P r o o f Compare (4.1) with (3.14), and recall that the conditions (3.15) are vacuous
if the distributions 〈Xα,Xβ〉 are involutive. 2

The symmetry forms of a diagonalizable symmetry class have Riemann coordinate
description

Ωα =
∑
β 6=α

aαβ(r) drβ . (4.2)

If the class is nondegenerate then the structure equations of the coframe Ω are

dΩα = −1
2
cαβγ Ωβ ∧Ωγ ,

where the functions cαβγ can be described in terms of the functions aαβ . If Z1, . . . ,Zn are
the vector fields dual to Ω1, . . . ,Ωn then

[Zα,Zβ ] = cγαβ Zγ .

The invariants
Zα1 ◦ · · · ◦ Zαk

cαβγ

give a generic characterization of the frame [14]. A nondegenerate diagonalizable symmetry
class is completely characterized by its symmetry coframe, so it is reasonable to suppose
that the invariants have some relation to the systems in the class. This idea is explored
in Section VI for the case n = 2.

The class with symmetry forms (4.2) consists of the simple systems

r1t + λ1r
1
x = 0, . . . , rn

t + λnr
n
x = 0

defined by the solutions λ1(r), . . . , λn(r) of the linear system of partial differential equa-
tions

λα,β = aαβ(r)(λα − λβ), α 6= β. (4.3)
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The compatibility conditions of (4.3) are

aαβ,γ = aαβaαγ − aαβaβγ − aαγaγβ , α, β, γ distinct. (4.4)

Serre [9] proves that the solution space of a compatible system (4.3) is parametrized by
n arbitrary functions of a single variable, and that the family of compatible systems is
parametrized by n2 − n arbitrary functions of two variables. If (4.4) holds then

aαβ,γ = aαγ,β, β, γ 6= α, (4.5)

and if (4.5) holds, where

aαβ =
λα,β

λα − λβ
,

then direct calculation proves (4.4).

Proposition Fix a diagonalizable symmetry class with characteristic distributions
∆1, . . . ,∆n and symmetry forms Ω1, . . . ,Ωn. Denote the dual distributions by ∆1, . . . ,∆n.
The defining equations for the class are compatible if and only if

dΩα ≡ 0 mod ∆α. (4.6)

P r o o f In Riemann coordinates the symmetry forms are (4.2), and the conditions
(4.6) are equivalent to

drα ∧ dΩα = 0,

or ∑
β,γ

aαβ,γ dr
α ∧ drβ ∧ drγ = 0,

or
aαβ,γ = aαγ,β. 2

A diagonalizable symmetry class is complete if its symmetry forms satisfy (4.6). All
hyperbolic symmetry classes are complete in the case n = 2. If A is the tensor of a system
in the class defined by (4.3) then the condition

d (dTA) = 0

which defines the zeroth order conserved densities T (r) is

T,αβ + aαβT,α + aβαT,β = 0. (4.7)

Note that these equations depend only on the functions aαβ , so the systems in the class
have the same zeroth order conserved densities, as proved in Theorem 3.3. The conditions
(4.4) are the compatibility conditions of (4.7). Hence the equations (4.7) are compatible
if and only if the symmetry class is complete. Serre [9] proves that the solution space of
a compatible system (4.7) is parametrized by n arbitrary functions of a single variable.

Example 4.1 Consider a diagonalizable class with symmetry forms

Ωα =
∑
β 6=α

∂F

∂rβ
drβ , (4.8)
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where F (r) is an arbitrary function. In the case n = 2, a class is of this type if and only if

d(Ω1 + Ω2) = 0.

This case is examined in Section VI. Assume n ≥ 3. The completeness condition (4.4) is
then

∂2eF

∂rα∂rβ
= 0, α 6= β,

which holds if and only if

F = ln |f1(r1) + · · ·+ fn(rn)|

for some functions f1, . . . , fn. Nondegeneracy implies f1 ′, . . . , fn ′ 6= 0, so that

F = ln |σ|, σ = r1 + · · ·+ rn, (4.9)

in suitable Riemann coordinates. Conversely, the 1-forms (4.8) defined by the function
(4.9) constitute the symmetry coframe of a nondegenerate complete symmetry class, be-
cause the coefficients

aαβ =
1− δαβ

σ

satisfy (4.4), and

det a = (−1)n−1n− 1
σn

6= 0.

The symmetry forms are

Ωα =
1
σ

∑
β 6=α

drβ,

and the structure equations are

dΩα =
1

n− 1

∑
β

Ωα ∧Ωβ.

The structure functions are the constants

cαβγ =
1

n− 1
(δα

γ − δα
β ),

hence Ω is a Maurer-Cartan coframe. 2

If a diagonalizable symmetry class is Hamiltonian then Riemann coordinates for the
class are orthogonal coordinates for the metric of the Poisson bivector, by Theorem 3.4.
The Christoffel coefficients of a diagonal metric

g = gα(drα)2 (4.10)

are

Γα
αβ = [gα],β ,

Γβ
αα = −gα

gβ
[gα],β , α 6= β,

Γγ
αβ = 0, α, β, γ distinct,

(4.11)



240 Ph.W.DOYLE

where
[gα] = ln |gα|

1
2 .

The only curvature coefficients which are possibly nonzero are

Rα
βαβ = gβ

{
1
gβ

[gα],ββ + 1
gα

[gβ ],αα + 1
gβ

[gα],β [gα],β + 1
gα

[gβ],α[gβ],α−

1
gβ

[gα],β[gβ],β − 1
gα

[gα],α[gβ],α +
∑

γ 6= α, β

1
gγ

[gα],γ [gβ ],γ
}
, α 6= β,

(4.12)

and

Rα
βαγ =

gβ
gα
Rβ

αγα = [gα],βγ + [gα],β [gα],γ − [gα],β [gβ],γ − [gγ ],β [gα],γ ,

α, β, γ distinct.
(4.13)

Theorem 4.2 was proved by Tsarev [4].

Theorem 4.2
i) A diagonalizable Hamiltonian symmetry class is complete.
ii) Fix a system of orthogonal coordinates for a flat metric. There is a unique symmetry
class which is diagonal in these coordinates and is Hamiltonian with respect to the Poisson
bivector of the metric.

P r o o f A (1,1)-tensor A is Hessian with respect to a given flat metric if and only if
the associated (0,2)-tensor A# is symmetric and the (1,2)-tensor ∇A is symmetric in its
covariant arguments. If A is the tensor of the system

r1t + λ1r
1
x = 0, . . . , rn

t + λnr
n
x = 0

and g is the metric (4.10) then A# is symmetric. Moreover, the formulas (4.11) imply

〈∇A; drγ , ∂rα , ∂rβ 〉 − 〈∇A; drγ , ∂rβ , ∂rα〉 = δγ
α(λα,β + (λα − λβ)[gα],β)−

δγ
β(λβ,α + (λβ − λα)[gβ],α),

so ∇A is symmetric if and only if

aαβ = −[gα],β, α 6= β, (4.14)

where
aαβ =

λα,β

λα − λβ
.

If the symmetry class of the system is Hamiltonian then (4.14) implies (4.5), so the class
is complete. If a flat diagonal metric is given, then the curvature conditions (4.13) imply
that the coefficients aαβ given by (4.14) define a complete symmetry class. 2

This describes a diagonalizable Hamiltonian symmetry class in terms of its Riemann in-
variants and the metric of the Poisson bivector. It does not determine which complete
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symmetry classes are Hamiltonian. The conditions (4.5) hold if and only if there are
functions G1(r), . . . , Gn(r) such that

aαβ = −Gα,β

Gα
.

Note that Gα is defined up to multiplication by a nonzero function of rα. The diagonal
metric (4.10) satisfies (4.14) if and only if

gα =
G 2

α

hα(rα)

for some functions h1, . . . , hn, in which case the conditions (4.4) imply that the curvature
coefficients (4.13) are zero. The curvature coefficients (4.12) are zero if and only if

hα
′ Gβ,α

Gα
+ hβ

′ Gα,β

Gβ
+ 2hα

(
Gβ,α

Gα

)
,α

+ 2hβ

(
Gα,β

Gβ

)
,β

+

2
∑

γ 6= α, β

hγ
Gα,γ

Gγ

Gβ,γ

Gγ
= 0, α 6= β.

(4.15)

Note that these equations are linear in h. This implies the following result, which has also
recently been reported by Tsarev [5]. See Olver [12] for a discussion of compatibility of
Poisson bivectors, and of bi-Hamiltonian systems.

Theorem 4.3 The bivectors which generate the Hamiltonian structures of a complete
symmetry class are compatible.

P r o o f If h, k are nondegenerate solutions of (4.15) then h + sk is a nondegenerate
solution for small s. 2

Example 4.2 The system u
v
w


t

+

 v u 0
pu/u v pw/u

0 0 v

  u
v
w


x

= 0 (4.16)

describes the dynamics of a 1-dimensional gas. The field variables u, v, w denote the
density, velocity, and entropy of the gas, and the pressure is p(u,w). The propagation
speed is n(u,w) =

√
pu. A Hamiltonian structure was discovered by Verosky [2]. The

system is hyperbolic, with characteristic speeds

λ± = v ± n, λ = v,

and corresponding characteristic vector fields

X± = nu∂u ± pu∂v, X = pw∂u − pu∂w.
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The fact that any function s(w) is a Riemann invariant corresponds to involutivity of the
distribution 〈X+,X−〉. The existence of Riemann coordinates is equivalent to involutivity
of the distributions 〈X±,X〉, which holds if and only if

nupuw = 2(nu)upw. (4.17)

The condition (4.17) is satisfied for any pressure p(u), in which case (4.16) is an indepen-
dent 2-component hyperbolic system(

u
v

)
t

+
(

v u
pu/u v

) (
u
v

)
x

= 0, (4.18)

augmented by the equation
wt + vwx = 0.

The system (4.18) is discussed in Section VI. If pw 6= 0 then the general solution of
(4.17) is

p(u,w) = F

(
s(w)− 1

u

)
,

where s′ 6= 0, F ′ 6= 0. The propagation speed is entropy independent if and only if F ′′ = 0,
i.e.,

p = s(w)− 1
u
,

up to constant multiple, so that n = 1/u. In this case, (4.16) isuv
s


t

+

 v u 0
1/u3 v 1/u

0 0 v

 uv
s


x

= 0, (4.19)

or
qt + (s− r)qx = 0, rt + (q − s)rx = 0, st +

1
2
(q − r)sx = 0, (4.20)

in Riemann coordinates

q = v + s− 1
u
, r = −v + s− 1

u
, s = s(w).

The symmetry forms of the class of (4.20) are

Ω1 = −1
2
u dr + u ds, Ω2 = −1

2
u dq + u ds, Ω3 = −1

2
u dq − 1

2
u dr.

The class is nondegenerate and complete, and G1 = G2 = G3 = u. Note that this is the
symmetry class of Example 4.1, in the case n = 3. It consists of the simple systems

qt + λ1qx = 0, rt + λ2rx = 0, st + λ3sx = 0,

where

λ1 = ξ(q) + η(r) + ζ(s) + 2
uξ

′(q),

λ2 = ξ(q) + η(r) + ζ(s) + 2
uη

′(r),

λ3 = ξ(q) + η(r) + ζ(s)− 1
uζ

′(s).
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The zeroth order conserved densities are

T = u(f1(q) + f2(r) + f3(s)). (4.21)

The solution to (4.15) is

h1(q) = a+ 2cq, h2(r) = b+ 2cr, h3(s) = −1
4
(a+ b)− cs,

where a, b, c are arbitrary constants. Hence the Hamiltonian structure of the symmetry
class is generated by the 3-dimensional space of Poisson bivectors with flat metrics

u2

(
dq2

a+ 2cq
+

dr2

b+ 2cr
− ds2

1
4(a+ b) + cs

)
. (4.22)

These bivectors are compatible, by Theorem 4.3. In the field variables u, v, s, the 3-
dimensional space of Poisson operators has basis

D1 =

 0 1 0
1 0 0
0 0 0

 Dx +

 0 0 0
0 0 −sx/u
0 sx/u 0

 ,

D2 =

 0 0 1
0 1/u2 0
1 0 −1/u2

 Dx +

 0 0 0
0 −ux/u

3 vx/u
0 −vx/u ux/u

3

 ,

D3 = 2

−u v s
v (s− 1/u)/u2 0
s 0 −s/u2

 Dx+

−ux 3vx 3sx

−vx (3/u− 2s)ux/u
3 + sx/u

2 2(svx − vsx)/u
−sx 2(vsx − svx)/u 2sux/u

3 − sx/u
2

 .
The corresponding densities which generate (4.19) are

H1 = −1
2
u(v2 + p2), H2 = −uvp, H3 = −uv.

The exponential coordinates for a flat metric (4.22) are Casimirs for the corresponding
bivector, hence are conserved densities for the symmetry class. A conserved density (4.21)
is a Casimir for the bivector with metric (4.22) if and only if

Tqq =
g1q
2g1Tq − ug1

2g2 Tr + ug1
g3 Ts,

Trr = g2r
2g2Tr − ug2

2g1 Tq + ug2
g3 Ts,

Tss = g3s
2g3Ts − ug3

2g1 Tq − ug3
2g2 Tr,

(4.23)
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where

g1 =
u2

h1
, g2 =

u2

h2
, g3 =

u2

h3
.

The equations (4.23) are equivalent to

2h1f1
′′ + h1

′f1
′ = 2h2f2

′′ + h2
′f2

′ = 2h3f3
′′ + h3

′f3
′ =

cT − u(h1f1
′ + h2f2

′ − 2h3f3
′).

If c = 0 then the solution space is spanned by

ũ = u, ṽ = u(bq − ar), w̃ = u

(
bq2 + ar2 − 4ab

a+ b
s2
)
,

and T = 1. If c 6= 0 then the solution space is spanned by

ũ = u
√
|h1|, ṽ = u

√
|h2|, w̃ = u

√
|h3|,

and T = 1. In any case, the functions ũ, ṽ, w̃ are exponential coordinates for the met-
ric. 2

V Higher Order Conservation Laws

The systems in a symmetry class do not generally have the same higher order conserved
densities. We now describe the first order conserved densities for systems in a complete
class.

Theorem 5.1 Fix a system

r1t + λ1r
1
x = 0, . . . , rn

t + λnr
n
x = 0

in a complete symmetry class, i.e.,

λα,β

λα − λβ
= −Gα,β

Gα
(5.1)

for some functions G1(r), . . . , Gn(r). Assume

λα,α 6= 0, α = 1, . . . ,m, (5.2)

and
λα,α = 0, α = m+ 1, . . . , n. (5.3)

Then ∑
α

GαFα(rα, rα
x/Gα)

is a conserved density if and only if

Fα(y, z) =
fα(y)
z

, α = 1, . . . ,m,
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where
∑m

α=1 λα,αG
2

α fα(rα) is constant, in which case the associated flux is

∑
α

λαGαFα(rα, rα
x/Gα)− 2x

m∑
α=1

λα,αG
2

α fα(rα).

Each conserved density depending only on r, rx is equivalent modulo the space of total
derivatives to the sum of a density of this form and a zeroth order conserved density.

P r o o f The evolutionary vector field which represents the system is

V = −
∑
α

λαr
α
x∂rα .

If T = T (r, rx) and δ
δr (VT ) = 0 then

0 =
∂

∂rβ
xxx

δ

δrα
(VT ) = (λβ − λα)

∂2T

∂rα
x∂r

β
x

,

so that
T =

∑
α

Tα(r, rα
x ).

Therefore

0 =
∂

∂rβ
xx

δ

δrα
(VT ) = (λβ − λα)

∂2Tα

∂rα
x∂r

β
+ λα,β

∂2Tα

∂rα
x∂r

α
x

rα
x+

(λα − λβ)
∂2Tβ

∂rβ
x∂rα

+ λβ,α
∂2Tβ

∂rβ
x∂r

β
x

rβ
x , α 6= β,

or
∂2Tα

∂rα
x∂r

β
+
Gα,β

Gα

∂2Tα

∂rα
x∂r

α
x

rα
x =

∂2Tβ

∂rβ
x∂rα

+
Gβ,α

Gβ

∂2Tβ

∂rβ
x∂r

β
x

rβ
x , (5.4)

using (5.1). If α 6= β then the right side of (5.4) is independent of rα
x , hence

∂

∂rα
x

(
Gα

∂2Tα

∂rα
x∂r

β
+Gα,β

∂2Tα

∂rα
x∂r

α
x

rα
x

)
= 0, α 6= β,

or (
Gα

∂

∂rβ
+Gα,β r

α
x

∂

∂rα
x

)(
∂2Tα

∂rα
x∂r

α
x

rα
x

)
= 0, α 6= β.

This implies that
∂2Tα

∂rα
x∂r

α
x

rα
x

is a function of rα and rα
x/Gα, so

Tα = GαFα(rα, rα
x/Gα) +Rα(r)rα

x + Sα(r)

for some functions Fα, Rα, Sα. The conditions (5.4) imply

Rα,β = Rβ,α,
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or ∑
α

Rαr
α
x = DxR

for some function R(r). Now,

0 =
∂

∂rα
xx

δ

δrα
(VT ) = λα,α

(
∂3Tα

∂rα
x∂r

α
x∂r

α
x

rα
x + 3

∂2Tα

∂rα
x∂r

α
x

)
rα
x+

∑
β 6=α

(λβ − λα)
∂

∂rα
x

(
∂2Tα

∂rα
x∂r

β
+
Gα,β

Gα

∂2Tα

∂rα
x∂r

α
x

rα
x

)
rβ
x =

λα,α

(
∂3Tα

∂rα
x∂r

α
x∂r

α
x

rα
x + 3

∂2Tα

∂rα
x∂r

α
x

)
rα
x ,

hence
∂3Tα

∂rα
x∂r

α
x∂r

α
x

rα
x + 3

∂2Tα

∂rα
x∂r

α
x

= 0, α = 1, . . . ,m,

because of (5.2). This implies

z
∂3Fα

∂z3
+ 3

∂2Fα

∂z2
= 0,

or
Fα(y, z) =

fα(y)
z

+ a(y) + b(y)z,

so that

GαFα(rα, rα
x/Gα) =

G 2
α fα(rα)
rα
x

+ a(rα)Gα + b(rα)rα
x , α = 1, . . . ,m.

The term aGα can be absorbed into Sα, and the term brα
x is a total derivative. This proves

that the conserved density T is equivalent to a density of the form∑
α

GαFα (rα, rα
x/Gα) + S(r),

where
Fα(y, z) =

fα(y)
z

, α = 1, . . . ,m.

Differentiation proves that
n∑

α=m+1

GαFα(rα, rα
x/Gα)

is a conserved density with flux
n∑

α=m+1

λαGαFα(rα, rα
x/Gα),

using (5.1), (5.3), for arbitrary functions Fα. Finally,

V

{
m∑

α=1

G 2
α fα(rα)
rα
x

+ S(r)

}
=
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−
(

m∑
α=1

λαG
2

α fα

rα
x

)
x

+ 2
m∑

α=1

λα,αG
2

α fα −
∑
α

λαS,αr
α
x+

2
m∑

α=1

∑
β 6=α

{(λα − λβ)Gα,β + λα,βGα}Gαfα
rβ
x

rα
x

=

−
(

m∑
α=1

λαG
2

α fα

rα
x

)
x

+ 2
m∑

α=1

λα,αG
2

α fα −
∑
α

λαS,αr
α
x ,

hence
m∑

α=1

G 2
α fα

rα
x

+ S(r)

is a conserved density if and only if

δ

δr

(
2

m∑
α=1

λα,αG
2

α fα −
∑
α

λαS,αr
α
x

)
= 0.

The latter holds if and only if
∑m

α=1 λα,αG
2

α fα is constant and S is a zeroth order conserved
density, in which case

m∑
α=1

G 2
α fα

rα
x

is a conserved density with flux

m∑
α=1

λαG
2

α fα

rα
x

− 2x
m∑

α=1

λα,αG
2

α fα. 2

A less general result has recently been reported by Tsarev [5].

A characteristic speed of a hyperbolic system is degenerate if it is constant along its
characteristic foliation. In this case, there are solutions with values constrained to an
arbitrary leaf of the foliation, with arbitrary initial conditions, and these simple solu-
tions propagate along the x-axis with constant speed, for all time. A hyperbolic system
is genuinely nonlinear if the derivative of each speed is nonzero along its characteristic
foliation.

Example 5.1 Fix F (r1, r2) such that F,1 6= 0, F,2 6= 0. The diagonal system

r1t + e2F r1x = 0, r2t − e2F r2x = 0

is genuinely nonlinear. It will be referred to in Section VI. The symmetry forms of the
class of the system are

Ω1 = F,2 dr
2, Ω2 = F,1 dr

1,

and G1 = G2 = e−F . The first order conserved densities for the system are

T = e−2F

(
f1(r1)
r1x

− f2(r2)
r2x

)
+ S(r),
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where f1F,1 + f2F,2 is constant and S is zeroth order conserved density. 2

Corollary to Theorem 5.1 If the characteristic speeds of the system in Theorem 5.1
are degenerate then the first order conservation laws are

T =
∑
α

GαFα(rα, rα
x/Gα), X =

∑
α

λαGαFα(rα, rα
x/Gα),

where the functions F1, . . . , Fn are arbitrary.

P r o o f It suffices to show that every zeroth order conservation law has the form

T =
∑
α

Gαfα(rα), X =
∑
α

λαGαfα(rα)

for some functions f1, . . . , fn. This follows from the fact that the solutions of (4.7) are
uniquely determined by their values on the coordinate axes, as proved in Serre [9]. 2

Example 5.2 The gas dynamics system (4.20) has degenerate characteristic speeds. The
first order conservation laws are

T = u
(
F1(q, qx/u) + F2(r, rx/u) + F3(s, sx/u)

)
,

X = u
(
(s− r)F1(q, qx/u) + (q − s)F2(r, rx/u) + 1

2(q − r)F3(s, sx/u)
)
,

by the Corollary. Compare with the result of Verosky [2]. Theorem 5.2 now proves that this
system has conservation laws of arbitrarily high order. These conservation laws generate
higher order symmetries of the system via the Poisson bivectors described in Example
4.2. 2

Theorem 5.2 If a characteristic speed of a system in a complete symmetry class is
degenerate then the system has nontrivial conserved densities of arbitrarily high order.

P r o o f If λα,α = 0 then
VGα + Dx(λαGα) = 0. (5.5)

Hence if
(V + λαDx)P [r] = 0

then

V (GαP ) + Dx(λαGαP ) = P
(
VGα + Dx(λαGα)

)
+Gα(V + λαDx)P = 0,

i.e.,
T = GαP, X = λαGαP (5.6)

is a conservation law. For example, (V + λαDx)f = 0 for any function f(rα). Now, (5.5)
implies

[V + λαDx, G
−1

α Dx] = 0,
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hence G −1
α Dx stabilizes ker(V + λαDx). Therefore

1
Gα

f(rα)x,
1
Gα

(
1
Gα

f(rα)x

)
x
, . . .

are differential functions of arbitrarily high order contained in ker(V+λαDx). The conser-
vation laws (5.6) associated with these functions are trivial, in that T is a total derivative
in each case. But note that if P0, . . . , Pk are functions in ker(V + λαDx) then

(V + λαDx)F (P0, . . . , Pk) = 0

for any function F. 2

The technique of Theorem 5.2 was used by Serre [8] to prove the existence of conserved
densities of arbitrarily high order for the gas dynamics system (4.16).

Example 5.3 If the characteristic speeds of a 2-component hyperbolic system are de-
generate but regular then they may be used as Riemann coordinates, in which the system
has the form

r1t + r2r1x = 0, r2t + r1r2x = 0,

which is equivalent to the Born-Infeld equation [10]. The symmetry class is defined by the
functions

G1 =
1

r1 − r2
, G2 =

1
r2 − r1

.

The first order conservation laws are

T =
F1(r1, (r1 − r2)r1x)

r1 − r2
+
F2(r2, (r2 − r1)r2x)

r2 − r1

X =
r2F1(r1, (r1 − r2)r1x)

r1 − r2
+
r1F2(r2, (r2 − r1)r2x)

r2 − r1
,

by the Corollary to Theorem 5.1. The second order conservation laws provided by Theorem
5.2 are

T =
F1

(
r1, (r1 − r2)r1x, (r

1 − r2)((r1 − r2)r1x)x

)
r1 − r2

+

F2

(
r2, (r2 − r1)r2x, (r

2 − r1)((r2 − r1)r2x)x

)
r2 − r1

,

X =
r2F1

(
r1, (r1 − r2)r1x, (r

1 − r2)((r1 − r2)r1x)x

)
r1 − r2

+

r1F2

(
r2, (r2 − r1)r2x, (r

2 − r1)((r2 − r1)r2x)x

)
r2 − r1

. 2
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VI 2-Component Systems

We now examine symmetry classes of 2-component hyperbolic systems. This is the case
n = 2. All 2-component hyperbolic symmetry classes are diagonalizable and complete.
A hyperbolic symmetry class is characterized by its characteristic distributions and its
symmetry forms Ψ = Ω1,Π = Ω2. The sum Ω = Π + Ψ of the symmetry forms is the
total form of the class, and a hyperbolic class is exact if its total form is exact. If X,Y are
tangent to the characteristic distributions and Ξ,Υ are the dual 1-forms then the class
consists of the systems ut + Aux = 0 with tensors

A = λX⊗Ξ + µY⊗Υ

such that
Xµ
µ− λ

Ξ = Π,
Yλ
λ− µ

Υ = Ψ.

Proposition 6.1 A hyperbolic symmetry class is exact if and only if it contains a system
with characteristic speeds of equal magnitude and opposite sign. The system is unique,
up to constant multiple, and is called the canonical representative.

P r o o f If µ = −λ then

Ω =
Xλ
2λ

Ξ +
Yλ
2λ

Υ = dF,

where F = 1
2 ln |λ|. Conversely, if Ω = dF for some function F then

A = e2F X⊗Ξ− e2F Y⊗Υ

is the tensor of a system in the class. 2

The symbols r, s are used exclusively to denote Riemann coordinates, in which the sym-
metry forms are

Π = a dr, Ψ = b ds, (6.1)

the total form is
Ω = a dr + b ds, (6.2)

and the symmetry class consists of the simple systems

rt + λ rx = 0, st + µ sx = 0,

where λ, µ is a solution of

µr = a(r, s)(µ− λ), λs = b(r, s)(λ− µ).

The solution space of the latter system is parametrized by two arbitrary functions of a
single variable, for any a, b.

The Hamiltonian structures of the hyperbolic symmetry class with Riemann coor-
dinates r, s, symmetry forms (6.1), and total form (6.2) are generated by the Poisson
bivectors with flat metrics

g dr2 + h ds2
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such that
(ln |h|)r = −2a, (ln |g|)s = −2b, (6.3)

as in Theorem 4.2.

Proposition 6.2 A hyperbolic Hamiltonian symmetry class is exact if and only if there
exist Riemann coordinates which are isothermal for the metric of the Poisson bivector.

P r o o f If the coordinates are isothermal, so that

|g| = |h| = e−2F

for some function F, then the conditions (6.3) imply Ω = dF. Conversely if the class is
exact then

a = Fr, b = Fs

for some function F, so that

g =
e−2F

p(r)
, h =

e−2F

q(s)

for some functions p, q, by (6.3). Then the Riemann coordinates

r̃(r) =
∫ r

|p(r′)|−
1
2dr′, s̃(s) =

∫ s

|q(s′)|−
1
2ds′

are isothermal. 2

Proposition 6.3 An exact symmetry class with total form Ω = dF is Hamiltonian if
and only if there are Riemann coordinates r, s such that

Frr ± Fss = 0, (6.4)

in which case the class is Hamiltonian with respect to the Poisson bivector with flat metric

e−2F (dr2 ± ds2). (6.5)

P r o o f If the class is Hamiltonian then the metric of the bivector is (6.5) in iso-
thermal Riemann coordinates, by (6.3). Hence (6.4) holds, because the metric is flat.
Conversely, if (6.4) holds then the metric (6.5) is flat. This metric also satisfies the
conditions (6.3), so the class is Hamiltonian with respect to the associated bivector. 2

Note that this does not exclude the possibility that the exact class is also Hamiltonian
with respect to other bivectors. See Theorem 6.5.

A 2-component hyperbolic symmetry class is nondegenerate if its symmetry forms
are nonzero. The characteristic distributions are then given by the symmetry forms.
The symmetry coframe provides a local one-to-one correspondence between nondegerate
classes and coframes on R2. See Gardner [14] for details of the equivalence method.
Only the following facts are needed here. Coframes are equivalent if they are related by
a diffeomorphism. An equivalence identifies the characteristic distributions, hence the
Riemann coordinates of the symmetry classes. An equivalence may therefore be viewed as
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a change of Riemann coordinates. A vector field W is an infinitesimal automorphism of a
coframe if its flow is a 1-parameter family of self-equivalences, which holds if and only if

LWΠ = LWΨ = 0.

The automorphisms are the vector fields with Riemann coordinate description

W = f(r)∂r + g(s)∂s

such that
LWΩ = 0.

The structure equations of a coframe
(Π
Ψ

)
are

dΠ = I Ψ ∧Π, dΨ = J Π ∧Ψ,

where the functions I, J are the zeroth order invariants. The symmetry class is exact if
and only if I = J. The first order invariants are the functions I1, I2, J1, J2 defined by

dI = I1 Π + I2 Ψ, dJ = J1 Π + J2 Ψ.

Higher order invariants are defined analogously. Generic coframes are locally equivalent if
and only if their invariants satisfy the same functional relations. The rank of a coframe is
the number of functionally independent invariants. The dimension of the automorphism
algebra of a coframe is equal to the codimension of the rank, e.g., the automorphism
algebra of a rank 0 coframe is 2-dimensional. Proposition 6.4 is given here as an example
of a coframe invariant. The result is used in Theorem 6.5.

Proposition 6.4 The Gaussian curvature of the metric Π2 + Ψ2 defined by a cofra-
me

(Π
Ψ

)
is

K = −(I2 + J1 + I2 + J2).

P r o o f If Π = a dr, Ψ = b ds then

dΠ =
as

ab
Ψ ∧Π, dΨ =

br
ab

Π ∧Ψ,

hence

I =
as

ab
, J =

br
ab
.

The Gaussian curvature of the metric a2 dr2 + b2 ds2 is

R1221

a2b2
= − 1

b2

(
as

a

)
s
− 1
a2

(
br
b

)
r
− 1
b2
as

a

as

a
− 1
a2

br
b

br
b

+
1
b2
as

a

bs
b

+
1
a2

ar

a

br
b

=

−1
b

(
as

ab

)
s
− 1
a

(
br
ab

)
r
− as

ab

as

ab
− br
ab

br
ab

= −(I2 + J1 + I2 + J2),

using (4.12). 2



SYMMETRY CLASSES OF QUASILINEAR SYSTEMS 253

In the case n = 2, a 1-weight Poisson bivector is either definite or indefinite, i.e., the
corresponding flat metric on U is definite or indefinite. A definite bivector is described in
appropriate Darboux coordinates u, v by the operator

D =
(

Dx 0
0 Dx

)
,

and the Hamiltonian system generated by a function H(u, v) is(
u
v

)
t

=
(
Huu Huv

Huv Hvv

) (
u
v

)
x

.

Theorem 6.1 The total form of the hyperbolic Hamiltonian system(
u
v

)
t

=
(
Huu Huv

Huv Hvv

) (
u
v

)
x

, Huv 6= 0,

is
Ω =

Pv du− Pu dv

2(P 2 + 1)
, P =

Huu −Hvv

2Huv
.

The symmetry class of the system is exact if and only if

(tan−1 P )uu + (tan−1 P )vv = 0.

The class is nondegenerate if and only if

PuPu − 2PPuPv − PvPv 6= 0,

in which case the zeroth order invariants of the coframe are

I − J = 4(P 2 + 1)
5
2

(tan−1 P )uu + (tan−1 P )vv

PuPu − 2PPuPv − PvPv
,

I + J = 4(P 2 + 1)
5
2

(P 2 + 1)−
1
2

uu − (P 2 + 1)−
1
2

vv

PuPu − 2PPuPv − PvPv
+

24PPuPv − 8(P 2 + 1)Puv

PuPu − 2PPuPv − PvPv
.

P r o o f A tedious but direct calculation. See Doyle [15]. 2

The symmetry class is exact if and only if P = f1/f2 for some holomorphic function
f1(u, v)− if2(u, v), in which case(

u
v

)
t

=
(
f1 f2

f2 −f1

) (
u
v

)
x

is the canonical representative.

An indefinite bivector is described in appropriate Darboux coordinates u, v by the
operator

D =
(

0 Dx

Dx 0

)
,
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and the Hamiltonian system generated by a function H(u, v) is(
u
v

)
t

=
(
Huv Hvv

Huu Huv

) (
u
v

)
x

. (6.6)

Theorem 6.2 The total form of the hyperbolic Hamiltonian system(
u
v

)
t

=
(
Huv Hvv

Huu Huv

) (
u
v

)
x

, Huu,Hvv > 0,

is

Ω =
Pu du− Pv dv

2P
, P =

√
Huu

Hvv
.

The symmetry class of the system is exact if and only if

(lnP )uv = 0.

The class is nondegenerate if and only if

PP−1
uP

−1
u 6= P−1PvPv,

in which case the zeroth order invariants of the coframe are

I − J =
8(lnP )uv

P−1PvPv − PP−1
uP−1

u
, I + J =

4(P−1
uu − Pvv)

P−1PvPv − PP−1
uP−1

u
.

P r o o f Again, a tedious calculation. See Doyle [15]. 2

The symmetry class is exact if and only if P = m1/m2 for some functions m1(u),
m2(v) > 0, in which case (

u
v

)
t

=
(

0 m 2
2

m 2
1 0

) (
u
v

)
x

is the canonical representative. If the class is nondegenerate then the zeroth order invariant
is

I = 2
1
m1

(
1
m1

)′′
− 1
m2

(
1
m2

)′′
(

1
m2

)′ ( 1
m2

)′
−
(

1
m1

)′ ( 1
m1

)′ .
Example 6.1 The elasticity equation

ψtt = m(ψx)2ψxx

with propagation speed m > 0 is equivalent to(
u
v

)
t

=
(

0 1
m(u)2 0

) (
u
v

)
x

, (6.7)
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via u = ψx, v = ψt. The system (6.7) is a hyperbolic Hamiltonian system (6.6), with
H(u, v) = M(u) + 1

2v
2, M ′′ = m2, and is the canonical representative of its symmetry

class. The system (
u
v

)
t

+
(

v u
n(u)2/u v

) (
u
v

)
x

= 0 (6.8)

describes the dynamics of a 1-dimensional isentropic gas. The field variables u, v denote the
density and velocity of the gas, and the propagation speed is n(u) > 0. The system (6.8)
is a hyperbolic Hamiltonian system (6.6), with H(u, v) = −N(u)− 1

2uv
2, N ′′ = n2/u. The

systems (6.7), (6.8) are symmetries if and only if n2 = u2m2. The function which describes
the symmetry structure is P = m. The symmetry class is exact, and is nondegenerate if
and only if m′ 6= 0, in which case the zeroth order invariant is

I = −2
1
m

(
1
m

)′′
(

1
m

)′ ( 1
m

)′ .
If I is constant, then this equation can be solved for m :

I 6= −2 : m = (c1u+ c2)−2/(I+2),

I = −2 : m = exp (c1u+ c2).

The polytropic gas dynamics systems thus correspond to the case of a constant invariant
I 6= −2. 2

The symmetry forms of a nondegenerate exact symmetry class with total form Ω = dF
are Π = Fr dr, Ψ = Fs ds, in Riemann coordinates r, s, where Fr, Fs 6= 0. The zeroth order
invariant is

I =
Frs

FrFs
,

and the first order invariants are

I1 =
Ir
Fr
, I2 =

Is
Fs
.

There are three generic possibilities:

rank 0 : dI = 0,

rank 1 : dI 6= 0, dI1 ∧ dI = dI2 ∧ dI = 0,

rank 2 : dI1 ∧ dI 6= 0 or dI2 ∧ dI 6= 0.

The automorphisms are the vector fields

W = f(r)∂r + g(s)∂s

such that
LW dF = 0,
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i.e.,
d(LW F ) = 0.

Theorem 6.3 The first order conserved densities for the canonical representative of a
nondegenerate exact symmetry class correspond to the infinitesimal automorphisms of the
coframe of the class.

P r o o f The canonical system is

rt + e2F rx = 0, st − e2F sx = 0.

Compare Example 5.1. 2

We now use the automorphisms to extract the normal forms for the rank 0 and rank 1
exact symmetry classes. Suppose that the coframe has a nonzero automorphism

(f(r)∂r + g(s)∂s)F = c,

where c is constant. If f = 0 or g = 0 then Frs = 0, i.e., I = 0. If f, g 6= 0 then

(∂r + ∂s)F = 2c,

or
F (r, s) = Φ(r − s) + c(r + s)

in suitable Riemann coordinates. In these coordinates, I, I1, I2 are functions of r−s, hence
the coframe has rank 0 or rank 1. The coframe has rank 0 if and only if I is constant. If
I = 0 then Frs = 0. This implies

F (r, s) = r − s

in suitable Riemann coordinates. In these coordinates, the automorphism algebra is the
2-dimensional abelian algebra of constant vector fields, reflecting the invariance of

Ω = dr − ds

under arbitrary translations of r, s. If I = −1/ε then (eF/ε)rs = 0. This implies

F (r, s) = ε ln |r − s|

in suitable Riemann coordinates. In these coordinates, the automorphism algebra is the
2-dimensional nonabelian algebra spanned by the vector fields r ∂r +s ∂s, ∂r +∂s, reflecting
the invariance of

Ω =
ε

r − s
(dr − ds)

under dilations and equal translations of r, s. If dI ∧ Ω = 0, then the higher order
invariants are also functionally dependent on F, so the coframe has rank 0 or rank 1. Note
that dI ∧Ω = 0 if and only if I1 = I2, because

dI ∧Ω = (I1 − I2)Π ∧Ψ.
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The condition I1 = I2 is equivalent to

Frsr

Fr
− FrsFrr

F 2
r

=
Fsrs

Fs
− FsrFss

F 2
s

,

or (
ln
∣∣∣∣Fr

Fs

∣∣∣∣)
rs

= 0,

or
(f(r)∂r + g(s)∂s)F = 0

for some f, g 6= 0, which holds if and only if

(∂r + ∂s)F = 0,

or
F (r, s) = Φ(r − s)

in suitable Riemann coordinates. In these coordinates, the automorphism ∂r+∂s represents
the invariance of

Ω = Φ′(r − s)(dr − ds)

under equal translations of r, s. There is an independent automorphism if and only if

Φ′(r − s) =
1

f(r)− g(s)

for some f 6= g, in which case
I = −f ′ = −g′,

so that I is constant, i.e., the coframe has rank 0. Finally, suppose that the coframe has
rank 1, and that dI∧Ω 6= 0, i.e., I1 6= I2. If Ir = 0 then Is 6= 0. Therefore I2 r = 0, because
dI2∧dI = 0. But then Frs = 0, contradicting dI 6= 0. This proves I1 6= 0; similarly I2 6= 0.
The conditions dI1 ∧ dI = dI2 ∧ dI = 0 imply

I1 = h(I), I2 = k(I), (6.9)

and the argument just given shows h 6= 0, k 6= 0. Fix H,K such that H ′ = 1/h, K ′ = 1/k.
Then

H(I)r = Fr , K(I)s = Fs ,

so that
H(I) = F + g(s), K(I) = F + f(r). (6.10)

The condition dI ∧ dF 6= 0 implies f ′ 6= 0, g′ 6= 0. Differentiating (6.10) gives

I1 = k(I)
(
Fr + f ′(r)

Fr

)
, I2 = h(I)

(
Fs + g′(s)

Fs

)
. (6.11)

The conditions (6.9), (6.11) imply(
Fr + f ′(r)

Fr

)(
Fs + g′(s)

Fs

)
= 1,
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or (
1

f ′(r)
∂r +

1
g′(s)

∂s

)
F = −1,

so that
(∂r + ∂s)F = 2,

or
F (r, s) = Φ(r − s) + r + s

in suitable Riemann coordinates. In these coordinates, the automorphism ∂r+∂s represents
the invariance of

Ω = Φ′(r − s)(dr − ds) + dr + ds

under equal translations of r, s. There is an independent automorphism if and only if

f(r)(1 + Φ′(r − s)) + g(s)(1− Φ′(r − s)) = 0

for some nonzero functions f 6= g. This implies

Φ′(r − s) =
g(s) + f(r)
g(s)− f(r)

.

But then

I =
f ′

2f
=
g′

2g
,

so that I is constant, contradicting dI 6= 0.

Theorem 6.4 A nondegenerate exact symmetry class with rank 0 or rank 1 coframe is
generically equivalent to one of the normal forms

rank 0, I = 0 : Ω = dr − ds, (6.12a)

rank 0, I = −1
ε : Ω = ε

r − s(dr − ds), (6.12b)

rank 1, I1 = I2 : Ω = φ(r − s)(dr − ds),
(

1
φ

)′′
6= 0, (6.12c)

rank 1, I1 6= I2 : Ω = φ(r − s)(dr − ds) + dr + ds, (6.12d)

(
ln
∣∣∣∣φ− 1
φ+ 1

∣∣∣∣)′′ 6= 0,

where r, s are Riemann coordinates. Two coframes (6.12c) defined by functions φ, φ̃ are
equivalent if and only if

φ̃(y) = cφ(cy + d) (6.13)

for some constants c 6= 0 and d. Two coframes (6.12d) defined by functions φ, φ̃ are
equivalent if and only if

φ̃(y) = φ(y + d) (6.14)

for some constant d. There are no other redundancies in (6.12).
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P r o o f It has already been shown that each rank 0 or rank 1 exact symmetry
class is generically equivalent to one of the normal forms (6.12). A coframe (6.12) is
exact, and has rank 0 or rank 1, because all of its invariants are functions of r − s. The
coframes (6.12a,b) are not equivalent, because they have distinct constant zeroth order
invariants. The condition (1/φ)′′ 6= 0 ensures that (6.12c) has rank 1. The condition
(ln |φ− 1/φ+ 1|)′′ 6= 0 ensures that the invariants of (6.12d) satisfy I1 6= I2. Now, assume
that the coframesΠ = φ(r − s) dr

Ψ = −φ(r − s) ds

 ,
 Π̃ = φ̃(r̃ − s̃) dr̃

Ψ̃ = −φ̃(r̃ − s̃) ds̃


are equivalent via

ϕ(r̃, s̃) = (r(r̃), s(s̃)),

i.e.,
ϕ∗Π = Π̃, ϕ∗Ψ = Ψ̃.

Then
φ(r − s)r′(r̃) = φ̃(r̃ − s̃), φ(r − s)s′(s̃) = φ̃(r̃ − s̃).

This implies r′ = s′, so that

r = cr̃ + d1, s = cs̃+ d2,

and
cφ(r − s) = φ̃(r̃ − s̃).

Therefore (6.13) holds. Conversely, (6.13) implies that the coframes (6.12c) defined by
φ, φ̃ are equivalent. Finally, assume that the coframesΠ = (1 + φ(r − s)) dr

Ψ = (1− φ(r − s)) ds

 , (
ln
∣∣∣∣φ− 1
φ+ 1

∣∣∣∣ )′′ 6= 0,

and  Π̃ = (1 + φ̃(r̃ − s̃)) dr̃

Ψ̃ = (1− φ̃(r̃ − s̃)) ds̃


are equivalent via

ϕ(r̃, s̃) = (r(r̃), s(s̃)),

i.e.,
ϕ∗Π = Π̃, ϕ∗Ψ = Ψ̃.

Then
(1 + φ(r − s))r′(r̃) = 1 + φ̃(r̃ − s̃),

(1− φ(r − s))s′(s̃) = 1− φ̃(r̃ − s̃),
(6.15)

so that
(1 + φ(r − s))r′ + (1− φ(r − s))s′ = 2. (6.16)
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If r′ 6= s′ then differentiating (6.16) by r̃, s̃ implies(
ln |(φ(r − s) + 1)(r′ − s′)|

)
r̃

=
(
ln |(φ(r − s)− 1)(r′ − s′)|

)
s̃

= 0,

hence
(φ(r − s)− 1)(r′ − s′) = f̃(r̃), (φ(r − s) + 1)(r′ − s′) = g̃(s̃),

or (
φ− 1
φ+ 1

)
(r − s) =

f(r)
g(s)

,

so that (
ln
∣∣∣∣φ− 1
φ+ 1

∣∣∣∣)′′ = 0,

contradicting the contrary assumption. Therefore r′ = s′, or

r = r̃ + d1, s = s̃+ d2,

because of (6.16). The relation (6.14) now follows from (6.15). Conversely, (6.14) implies
that the coframes (6.12d) defined by φ, φ̃ are equivalent. 2

Corollary A nondegenerate exact symmetry class with rank 0 or rank 1 coframe has
(generically) an indefinite Hamiltonian structure.

P r o o f This follows from Theorem 6.4 and Proposition 6.3. 2

The automorphisms of the normal forms were described in the discussion leading to The-
orem 6.4. The first order conservation laws for the canonical systems are now provided
by Theorem 6.3. The canonical representative of the symmetry class (6.12a) has two
independent first order conservation laws

T =
e2(s−r)

rx
, X =

1
rx
− 4x

and

T = −e
2(s−r)

sx
, X =

1
sx

+ 4x.

The canonical representative of the the symmetry class (6.12b) also has two independent
first order conservation laws

T = (r − s)−2ε
(

1
rx
− 1
sx

)
, X =

1
rx

+
1
sx

and
T = (r − s)−2ε

(
r

rx
− s

sx

)
, X =

r

rx
+

s

sx
− 4εx.

The canonical representative of the symmetry class (6.12c) has one first order conservation
law

T = e−2Φ(r−s)
(

1
rx
− 1
sx

)
, X =

1
rx

+
1
sx
,
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and the canonical representative of the symmetry class (6.12d) has one first order conser-
vation law

T = e−2(Φ(r−s)+r+s)
(

1
rx
− 1
sx

)
, X =

1
rx

+
1
sx
− 8x,

where Φ′ = φ.

A nondegenerate exact symmetry class with total form Ω = dF is simple if dI∧Ω = 0,
i.e., I1 = I2. The normal forms for the simple classes are (6.12a,b,c). The following
arguments show that the simple classes are the elasticity/gas dynamics classes of Example
6.1.

Example 6.2 If the function P which describes the symmetry structure of a nonde-
generate class of hyperbolic Hamiltonian systems (6.6) has the form P = P (u) then
the class is an elasticity/gas dynamics class with canonical representative (6.7), where
m = P. Conversely, the function P of the elasticity/gas dynamics class with canonical
representative (6.7) has the form P = P (u). The total form is

Ω =
P ′

2P
du,

and the zeroth order invariant is

I(u) = −2
1
P

(
1
P

)′′
(

1
P

)′ (
1
P

)′ ,
hence the class is simple. The case P = P (v) reduces to the previous case by interchange
of u, v. 2

There are Riemann coordinates r, s in which

F (r, s) = Φ(r − s),

so that
Ω = φ(r − s)(dr − ds),

where φ = Φ′. The symmetry class consists of the simple systems

rt + λ rx = 0, st + µ sx = 0,

where λ, µ is a solution of

λs = −φ(r − s)(λ− µ), µr = φ(r − s)(µ− λ). (6.17)

The solutions of (6.17) are λ = fr, µ = fs, where f satisfies the Euler-Poisson-Darboux
equation

fzz = fyy − 2φ(y)fy, (6.18)

where y = r− s, z = r+ s. The Riemann coordinates in which Ω has the prescribed form
are unique up to independent translations, equal dilations, and interchange. If

Ω = φ̃(r̃ − s̃)(dr̃ − ds̃)
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then f satisfies (6.18) if and only if

fz̃z̃ = fỹỹ − 2φ̃(ỹ)fỹ,

where ỹ = r̃ − s̃, z̃ = r̃ + s̃. Moreover, fyz = 0 if and only if fỹz̃ = 0. Hence there
is an intrinsic space of systems generated by the solutions of (6.18) with the form f =
f1(y) + f2(z). This space is 3-dimensional. The solutions f = z and f =

∫ y e2Φ(y′)dy′

produce the translation generator and the canonical system, and the solution

f =
1
4
z2 +

1
2

∫ y

e2Φ(y′)
∫ y′

e−2Φ(y′′)dy′′ dy′

produces the system
rt +

(
1
2(r + s) + ν(r − s)

)
rx = 0,

st +
(

1
2(r + s)− ν(r − s)

)
sx = 0,

(6.19)

where
ν(y) =

1
2
e2Φ(y)

∫ y

e−2Φ(y′)dy′ .

The symmetry class is Hamiltonian with respect to the Poisson bivector with flat metric

e−2F (dr2 − ds2),

by Proposition 6.3. The coordinates in which the bivector is described by the operator

D =

 0 Dx

Dx 0


are

u = aũ+ bṽ, v = cũ+ dṽ,

where
ũ(r, s) =

∫ r−s

e−2Φ(y)dy, ṽ(r, s) =
r + s

2
,

and where a, b, c, d are constants such that ad 6= bc, and a c

b d

  0 1

1 0

  a b

c d

 =

 0 1

1 0

 .
This implies F = F (u) or F = F (v). But then P = P (u) or P = P (v), as in Example
6.2. This proves that every simple class is an elasticity/gas dynamics class. The system
(6.19) is described in the coordinates u = ũ, v = ṽ by the gas dynamics system (6.8), with
n(u) = ν((r − s)(u)).

Example 6.3 The system u
v


t

=

 0 1/v2

4/u2 0

 u
v


x
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is a hyperbolic Hamiltonian system (6.6). The symmetry class is exact and nondegenerate.
The zeroth order invariant is I = 0, so the class is simple. However, P = 2v/u is neither
a function of u only nor of v only. 2

Comparison of Examples 6.2 and 6.3 may seem to contradict the claim that each simple
class is an elasticity/gas dynamics class. The symmetry class of Example 6.3 has a sec-
ond Hamiltonian structure, however, and assumes the form of Example 6.2 in Darboux
coordinates for the second Poisson bivector.

Theorem 6.5 A simple symmetry class is multi-Hamiltonian if and only if the metric
of its coframe has constant Gaussian curvature K, in which case the space of Poisson
bivectors for the class is 3-dimensional. Each simple tri-Hamiltonian symmetry class is
equivalent to one and only one of the normal forms

K = 0, I = 0 : Ω = dr − ds, (6.20a)

K = 0, I > 0 : Ω = er−s(dr − ds), (6.20b)

K = 0, I < 0 : Ω = es−r(dr − ds), (6.20c)

K = − 2
ε2
, I = −1

ε : Ω = ε
r − s (dr − ds), (6.20d)

K = − 2
ε2
, I ′ > 0 : Ω = ε

cos (r − s) (dr − ds), ε > 0, (6.20e)

K = − 2
ε2
, I ′ < 0, I > 0 : Ω = ε

sinh(r − s) (dr − ds), ε < 0, (6.20f)

K = − 2
ε2
, I ′ < 0, I < 0 : Ω = ε

sinh(r − s) (dr − ds), ε > 0, (6.20g)

K = 2
ε2

: Ω = ε
cosh(r − s) (dr − ds), ε > 0, (6.20h)

where r, s are Riemann coordinates, and I ′ is the first order invariant.

P r o o f The zeroth order invariant of the class is

I(r, s) = −
(

1
φ

)′
(r − s),

and the common value of the first order invariants is

I ′(r, s) = −
(

1
φ

(
1
φ

)′′)
(r − s). (6.21)

The Gaussian curvature is K = −2(I ′ + I2), by Proposition 6.4, or

K(r, s) = 2
(

1
φ

(
1
φ

)′′
−
(

1
φ

)′ ( 1
φ

)′)
(r − s). (6.22)

The curvature is constant if and only if(
φ

(
1
φ

)′′)′
= 0, (6.23)
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because (
1
φ

(
1
φ

)′′
−
(

1
φ

)′ ( 1
φ

)′)′
=

1
φ2

(
φ

(
1
φ

)′′)′
.

The Poisson bivectors which generate the Hamiltonian structure of the class correspond
to the flat metrics

e−2F

(
dr2

p(r)
+
ds2

q(s)

)
,

by (6.3). ¿From (4.15), such a metric is flat if and only if

2pFrr + p′Fr + 2qFss + q′Fs = 0, (6.24)

or
((p+ q)φ)r = ((p+ q)φ)s, (6.25)

i.e., if and only if

p(r) + q(s) =
ψ(r + s)
φ(r − s)

for some function ψ(z). The solution p = 1, q = −1, ψ = 0 corresponds to the indefinite
Hamiltonian structure provided by Proposition 6.3. There is a solution p, q to (6.24) with
p+ q 6= 0 if and only if there is a non-zero function ψ such that(

ψ(r + s)
φ(r − s)

)
rs

= 0, (6.26)

or (
φ

(
1
φ

)′′)
(r − s) =

(
1
ψ
ψ′′
)

(r + s), (6.27)

which is the case if and only if

φ

(
1
φ

)′′
= κ

for some constant κ, i.e. if and only if (6.23) holds. Then (6.27) implies

ψ′′ = κψ,

so there is a 2-dimensional space of solutions ψ to (6.26). There is thus a 2-dimensional
space of solutions p + q = ψ/φ to (6.25), and a 3-dimensional space of solutions p, q to
(6.24). If κ = 0 then

φ(y) =
1

cy + d
,

in which case the invariant of the corresponding coframe is constant, so the normal forms
are (6.20a,d), as in Theorem 6.4. If κ < 0 then

φ(y) =
1

c cos (ky + δ)
,

where k2 = −κ, and the coframe is equivalent to (6.20e), by Theorem 6.4. If κ > 0 then

φ(y) = c e±ky,
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or
φ(y) =

1
c sinh(ky + δ)

or
φ(y) =

1
c cosh (ky + δ)

,

where k2 = κ, and the coframe is equivalent to one of (6.20b,c,f,g,h), by Theorem 6.4. The
values of I ′,K in (6.20) follow from (6.21), (6.22). Note that these imply that the listed
normal forms are inequivalent. 2

The tri-Hamiltonian structure of the rank 0 exact symmetry classes was first described by
Nutku [6].

Only first order Poisson operators (2.5) have been considered thus far in our analysis
of the Hamiltonian structure of quasilinear systems. The Hamiltonian structure of 2-
component systems with respect to third order Poisson operators was studied by Olver
and Nutku [7]. Theorem 6.6 is one of their results, given here in invariant form.

Theorem 6.6 All of the systems of an exact hyperbolic symmetry class with indefinite
Hamiltonian structure are also Hamiltonian with respect to a third order Poisson bivector.
The first and third order bivectors are compatible.

P r o o f The Darboux coordinate description of exactness given in Theorem 6.2 is the
separability criterion of Olver and Nutku [7]. 2

If the symmetry class is simple and tri-Hamiltonian then there is an open set of indefinite
Poisson bivectors in the relevant 3-dimensional space. To each of these there corresponds
a compatible third order Poisson bivector, with respect to which the symmetry class is
Hamiltonian. This generalizes the results of Arik, et al. [10].

VII Remarks

It might be interesting to have an invariant description of the quasilinear systems which
are Hamiltonian. This is equivalent to giving an invariant characterization of the (1,1)-
tensors on Rn which are Hessian with respect to some flat metric, a problem which is
unsolved even in the case n = 2. Further study of the invariants of the symmetry coframes
of nondegenerate symmetry classes may prove worthwhile. Finally, it may be possible
to extend Theorem 6.6 to exact hyperbolic symmetry classes with definite Hamiltonian
structure.
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