Application of Differential Forms to Construction of Nonlocal Symmetries

S.I. AGAFONOV

Institute for Mathematical Modelling Academy of Sciences of Russia, Miusskaya 4, Moscow 125047, Russia

Abstract

Differential forms are used for construction of nonlocal symmetries of partial differential equations with conservation laws. Every conservation law allows to introduce a nonlocal variable corresponding to a conserved quantity. A prolongation technique is suggested for action of symmetry operators on these nonlocal variables. It is shown how to introduce these variables for the symmetry group to remain the same. A new hidden symmetry and corresponding group-invariant solution are found for gas dynamic equations.

1 Integrable forms and nonlocal symmetries

Let us consider a system of differential equations

\[F^k(x, t, \overline{u}_x, \overline{u}_t ..) = 0, \quad k = 1, 2..m \]

with independent variables \(x, t \) and differential variables \(u^i (i = 1, 2..n) \). We call a differential form \(\omega = \alpha(x, t, \overline{u}_x, \overline{u}_t ..)dx + \beta(x, t, \overline{u}_x, \overline{u}_t ..)dt \) integrable (on (1)) if \(D_t(\alpha) = D_x(\beta) \) on (1). (It is suggested that \(\omega \neq 0 \) on (1).) Here \(D_t = \frac{\partial}{\partial t} + u^i_t \frac{\partial}{\partial u^i} + u^i_{tt} \frac{\partial}{\partial u^i_t} + u^i_{tx} \frac{\partial}{\partial u^i_x} + \cdots \), \(D_x = \frac{\partial}{\partial x} + u^i_x \frac{\partial}{\partial u^i} + u^i_{xx} \frac{\partial}{\partial u^i_x} + \cdots \) are operators of full derivatives. The integrability of the form \(\omega \) guarantees the existence of the function \(\Omega(x, t) \) which meets the condition \(d\Omega = \omega \). Thus we can extend the system (1) by means of equations \(\Omega_x = \alpha, \quad \Omega_t = \beta \), with the extended system being consistent. Forms which are integrable on (1) form an infinite-dimensional linear space.

For example, the system of gas dynamic equations in Euler coordinates

\[\rho_t + \rho u_x + u_x \rho = 0, \quad u_t + uu_x + \frac{1}{\rho} p_x = 0, \quad p_t + \gamma p u_x + u p_x = 0 \]

has the following basis of integrable forms:

\[\omega_1 = \rho u dx - (p + \rho u^2) dt, \quad \omega_2 = \left(\frac{\rho}{\gamma - 1} + \frac{\rho u^2}{2} \right) \times \]

\[dx - \left(\frac{\gamma p u}{\gamma - 1} + \frac{\rho u^3}{2} \right) dt, \quad \omega_3 = E \left(\frac{\rho}{p^{\frac{\gamma}{\gamma - 1}}} \right) p^{\frac{1}{\gamma}} dx - u E \left(\frac{\rho}{p^{\frac{\gamma}{\gamma - 1}}} \right) p^{\frac{1}{\gamma}} dt, \quad \omega_3 = \rho(x - tu) dx + (\rho u (tu - x) + tp) dt, \quad \omega_F = F_x(x, t) dx + F_t(x, t) dt, \]

with arbitrary functions \(E(s), \ F(x, t) \).
For $\gamma = 3$, there are two additional forms $\omega_1^2 = (tp + tpu^2 - \rho x)dx + (x(p + pu^2) - tpu^3 - \gamma tpu)dt$, $\omega_2^2 = (t^2p + \rho u^2t^2 - 2\rhouxt + \rho x^2)dx + (2txp + 2txpu^2 - \rhoux^2 - t^2pu^3 - \gamma t^2u)dt$.

A differential form ω_1 corresponds to the law of momentum conservation and allows to rewrite the system (2) in the form

$$\left(\frac{1}{\rho}\right)_t - p\left(\frac{1}{\rho}\right)_r = uu_r, \quad u_t - pu_r = -up_r, \quad \epsilon_t - pe_r = -puu_r (\epsilon = p/\gamma - 1)$$

with additional equations $x_r = 1/m_1$, $x_t = p/m_1 + u$. (see [1]). The symmetry operator of (2) $t \frac{\partial}{\partial x} + \frac{\partial}{\partial u}$ cannot be extended on r in the form $t \frac{\partial}{\partial x} + \frac{\partial}{\partial u} + R(x, t, \rho, u, p, r) \frac{\partial}{\partial r}$ so that it would be a symmetry operator for this system. Later we will see the reason of this fact.

Let $X = \xi(x, t, u) \frac{\partial}{\partial x} + \tau(x, t, u) \frac{\partial}{\partial t} + \eta(x, t, u) \frac{\partial}{\partial u}$ be an infinitesimal operator of some one-parameter transformation group acting on $R^{n+2}(x, t, u)$. Similarly to [2], its action may be extended on dx and dt by formulae $X(dx) = D_x(\xi)dx + D_t(\xi)dt = D(\xi) = D(X(x))$, $X(dt) = D_x(\tau)dx + D_t(\tau)dt = D(\tau) = D(X(t))$, where $D = dx D_x + dt D_t$ is the operator of full exterior differentiation (see [3]). The operator extended in that way can act on differential forms. Besides, it commutes with D. This property is analogous to the fact that a Lie derivative commutes with an exterior derivative. Obviously ω is integrable if and only if $D(\omega) = 0$ on (1). If X is a symmetry operator of (1) and ω is integrable, then $D(X(\omega)) = X(D(\omega)) = 0$ on (1) and $X(\omega)$ is integrable too. It is easy to show that if (1) may be written in the form

$$D(\Psi^i) = \Phi^i = 1 \ldots m, \quad (3)$$

where $\Psi^i = A^i(x, t, u..)dx + B^i(x, t, u..)dt$, $\Psi^i = E^i(x, t, u..)dt \wedge dx$, then X is a symmetry operator of (1) if and only if $D(X(\Psi^i)) = X(\Phi^i)$ on (1).

Action of the symmetry group of (2) on integrable forms may be represented in the form of the table:

<table>
<thead>
<tr>
<th></th>
<th>ω_1</th>
<th>ω_2</th>
<th>ω_3</th>
<th>ω_E</th>
<th>ω_F</th>
<th>ω_1^2</th>
<th>ω_2^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>s $\frac{\partial}{\partial s}$</td>
<td>0</td>
<td>0</td>
<td>ω_s</td>
<td>0</td>
<td>ω_{F_s}</td>
<td>$-\omega_1$</td>
<td>$2\omega_2$</td>
</tr>
<tr>
<td>t $\frac{\partial}{\partial t}$</td>
<td>0</td>
<td>0</td>
<td>$-\omega_1$</td>
<td>0</td>
<td>ω_{F_t}</td>
<td>$2\omega_2$</td>
<td>$2\omega_1^2$</td>
</tr>
<tr>
<td>ρ $\frac{\partial}{\partial \rho}$</td>
<td>ω_s</td>
<td>ω_1</td>
<td>0</td>
<td>0</td>
<td>ω_{F_s}</td>
<td>$-\omega_3$</td>
<td>0</td>
</tr>
<tr>
<td>x $\frac{\partial}{\partial x}$</td>
<td>ω_1</td>
<td>ω_2</td>
<td>ω_3</td>
<td>ω_{E_1}</td>
<td>0</td>
<td>ω_1^2</td>
<td>ω_2^2</td>
</tr>
<tr>
<td>γ $\frac{\partial}{\partial \gamma}$</td>
<td>0</td>
<td>ω_2</td>
<td>2ω_3</td>
<td>ω_{E_2}</td>
<td>ω_{F_2}</td>
<td>$2\omega_1^2$</td>
<td>3ω_2^2</td>
</tr>
<tr>
<td>$t \frac{\partial}{\partial x} + t^2 \frac{\partial}{\partial t} - tp \frac{\partial}{\partial \rho} + (x - tu) \frac{\partial}{\partial \omega}$</td>
<td>0</td>
<td>ω_2</td>
<td>0</td>
<td>ω_{F_3}</td>
<td>$\omega_{F_3} + t \omega_{E_3}$</td>
<td>ω_1^2</td>
<td>ω_2^2</td>
</tr>
<tr>
<td>$xt \frac{\partial}{\partial x} + t^2 \frac{\partial}{\partial t} - tp \frac{\partial}{\partial \rho} + (x - tu) \frac{\partial}{\partial \omega}$</td>
<td>ω_3</td>
<td>$-\omega_1^2$</td>
<td>0</td>
<td>0</td>
<td>$\omega_{dt F_3} + t^2 \omega_{E_3}$</td>
<td>$-\omega_1^2$</td>
<td>0</td>
</tr>
</tbody>
</table>

Here ω_{E_1} and ω_{E_2} are forms of the ω_E type with $E_1(s) = ((\gamma - 1)s \frac{d}{ds} E(s) + E(s))/\gamma$ $E_2(s) = E(s) - 2s \frac{d}{ds} E(s)$. The form $\omega_{F_s} = d(F_s)$ and so on. The last two columns and the last row arise where $\gamma = 3$. Thus, a linear space of integrable forms is decomposed into a direct sum of two invariant subspaces $V = V_{Fi} \oplus V_{Ft}$ of forms $\omega_{Fi} = df(x, t)$ and $\omega = c^1 \omega_1 + c^2 \omega_2 + c^3 \omega_3 + \omega_{E} + \{k^1 \omega_1^2 + k^2 \omega_2^2\}$, respectively. V contains a finite-dimensional invariant space of forms $\omega = c^1 \omega_1 + c^2 \omega_2 + c^3 \omega_3 + c^4 \omega_4 + \{k^1 \omega_1^2 + k^2 \omega_2^2\}.$ It is convenient to consider integrable forms up to forms which are equal to zero on solutions of (1). Since the space of such forms is invariant under action of a symmetry operator, this action is correctly defined on the factor space W of integrable forms by forms equal to zero on (1).
Theorem 1 Let \(W_{inv} \) be a finite-dimensional invariant subspace of \(W \) with the basis \(\tilde{\omega}_1, \tilde{\omega}_2, \ldots, \tilde{\omega}_k \). \(X \) be a symmetry operator of (1), \(X(\omega_i) = c_i^j \omega_j + \omega_i \), where \(\omega_i = \alpha_i x + \beta_i dt \) is the original of \(\tilde{\omega}_i \) under factorization, \(\omega_{i0} = 0 \) on (1). Then the system (1) extended by

\[
q_{ix} = \alpha_i, \quad q_{it} = \beta_i \quad i = 1 \ldots k
\]

has the symmetry operator \(Y = X + Q_i \frac{\partial}{\partial q_i} \) with \(Q_i = c_i^j q_j \).

Proof. Admissibility of \(Y \) is equivalent to \(D_x(q_i) - q_{ix} D_x(\xi) - q_{it} D_x(\tau) = Y(\alpha_i) D_t(q_i) - q_{it} D_t(\xi) - q_{ix} D_t(\tau) = Y(\beta_i) \) on (1). That may be rewritten in the form \(c_i^j \alpha_j - \alpha_i D_x(\xi) - \beta_i D_x(\tau) = Y(\alpha_i) c_i^j \beta_j - \alpha_i D_t(\xi) - \beta_i D_t(\tau) = Y(\beta_i) \). Multiplying the first equality by \(dx \) and the second by \(dt \) and summing them together, we arrive at \(Y(\omega_i) = c_i^j \omega_j \) which must be fulfilled on (1), i.e., \(Y(\omega_i) = c_i^j \omega_j + \omega_{i0} \).

This proof is valid in the case when \(Y(\omega_i) = D(f_i) + \omega_{i0} \), where \(f_i \) is a function of \(x, t, u, q, u_x, \ldots \), and the form \(\omega_{i0} \) is equal to zero on the extended system. In this case, \(Q_i = f_i \).

Now it is clear why the operator \(X = t \frac{\partial}{\partial x} + \frac{\partial}{\partial u} \) cannot be retained as a symmetry operator of (2) extended by \(r : dr = \omega_1 \). The form \(\omega_1 \) is not eigen for \(X : X(\omega_1) = \omega_s \). The space spanned by \(\omega_1, \omega_s \) is invariant under action of the symmetry algebra of (2), when \(\gamma \neq 3 \). Thus, all symmetry operators may be extended on \(r, m \) (here \(D(r) = \omega_1, D(m) = \rho dx - \rho dt \)). For example, \(t \frac{\partial}{\partial x} + \frac{\partial}{\partial u} \longrightarrow t \frac{\partial}{\partial x} + \frac{\partial}{\partial u} + m \frac{\partial}{\partial r} \), since \(X(\omega_s) = 0 \).

2 Examples

Extensions of (1) considered above turned out to be useful for construction of quasilocal symmetries proposed in [4]. The authors of [4] consider the sequence of equations

\[
w_t = H(w_{xx}),
\]

\[
v_t = h(v_x)v_{xx},
\]

\[
u_t = (h(u)u_x)_x
\]

(where \(H(s) = \int h(s) ds \)), connected with Backlund transforms

\[
w_x = v, \quad w_t = H(v_x) \quad v_x = u, \quad v_t = h(u)u_x.
\]

Then quasilocal symmetry of (6) associated with local symmetry of (5) may be regarded as symmetry of (5) extended on the new variable \(v \). To prolong the action of operator is to extend it on \(w_x \) and replace it by \(v \). But quasilocal symmetry of (5) associated with local symmetry of (6) cannot be obtain in a similar way. In [4], the so-called "transition formulas" are used for this purpose.

Here we suggest to use the above procedure of prolongation of the symmetry operator of (6) on the new variable \(w \) defined by \(dw = v dx + H(v_x) dt \). In [4] it was shown that (6) has a symmetry operator of rotation \(X = -v \partial_x + x \partial_t \) when \(h(\xi) = 1/(1 + \xi^2) \). We have \(X(D(w)) = X(v dx + \arctan(v_x) dt) = D \left(\frac{x^2 - v^2}{2} + t \right) \). So \(X = -v \partial_x + x \partial_t + \frac{x^2 - v^2}{2} \).
of (6) extended with the first pair of equations (8). Substituting \(v \) with \(w_x \), we get the Lie-Backlund symmetry operator of (5).

When \(H(ξ) = -3ξ^{-1/3} \), equation (7) has the symmetry operator \(X = x^2 \partial_x - 3uv \partial_u \) (see [4]). Since \(X(D(v)) = X(udx + h(u)u_x dt) = -D(xv) + vdx - 3v_x^{-1/3} dt + x(v_x^{-4/3}v_{xx} - v_t) dt \), we have a quasilocal symmetry operator of (6) \(X = x^2 \partial_x + (w - xv) \partial_v \), where \(dw = vdx - 3v_x^{-1/3} dt \). It can be prolonged on \(w \) as follows \(X = x^2 \partial_x + (w - xv) \partial_v + xw \partial_w \) since, \(X(dw) = D(xv) + v_x^{-4/3}(w_x - v)dt \). This operator can be treated as a symmetry operator of (6) extended with the first pair of equations (8).

Gas dynamic equations in mass Lagrange coordinates

\[
\left(\frac{1}{ρ} \right)_t - u_m = 0, \quad u_t + p_m = 0, \quad p_t + γρpu_m = 0
\]

(9)

(where the Euler coordinate \(x \) is connected with \(m \) by \(dx = \frac{dm}{ρ} + u dt \)) admits a symmetry operator \(X = t \partial_t - m \partial_p + \frac{pm}{ρ} \partial_p \) when \(γ = -1 \) (Chaplygin gas) (see [4]). Even extended by \(m_x = ρ \), \(m_t = -ρu \), system (2) does not allow this symmetry. The cause of this fact is that \(X(dx) = X\left(\frac{dm}{ρ} + u dt\right) = tdt - \frac{m}{ρp} dm = tdt - \frac{m}{ρp}(ρdx - μdt) = \left(t + \frac{μu}{ρ} \right) dt - \frac{m}{ρp}dx \) is not a differential of any function of \(t, x, m, ρ, u, p \). Introducing \(Q : D(Q) = \left(t + \frac{μu}{ρ} \right) dt - \frac{m}{ρp}dx \), we retain this symmetry of (2) extended by equations \(m_x = ρ \), \(m_t = -ρu \), \(Q_x = -\frac{m}{ρp} \), \(Q_t = t + \frac{μu}{ρ} \). Thus \(X(D(Q)) = 0 \). The prolonged operator is \(t \partial_t - m \partial_p + \frac{pm}{ρ} \partial_p + Q \partial_x \).

3 New hidden symmetry of gas dynamic equations

For the nonlocal variables \(m \) and \(r \) of Eqs.(2), we have \(m_t = -r_x \). It allows to introduce the variable \(w : w_x = -m \), \(w_t = r \). Then \(ρ = m_x = -w_{xx}, \ u = r_x/m_x = -w_{tx}/w_{xx}, \ p = -r_t - m_x(r_x/m_x)^2 = -w_{tt} + w_{tx}/w_{xx} \). So all dependent variables of (2) are expressed in terms of derivatives of \(w \). Equations for \(ρ, u \) are fulfilled for any \(W(x, t) \) and the equation for \(p \) gives

\[
w_{tt}w_{xx}^3 - 3w_{tx}w_{xt}w_{xx}^2 - w_{txt}(γw_tw_{xx}^2 - (γ + 3)w_{xx}^2w_{xx}) + w_{xxx}(-γ + 1)w_{xt}^2 + γw_tw_{xx}w_{xx}) = 0
\]

(10)

The symmetry algebra of this equation is generated by the following operators

\[
X_1 = \partial_t, \quad X_2 = \partial_x, \quad X_3 = t \partial_t, \quad X_4 = t \partial_x, \quad X_5 = x \partial_x, \quad X_6 = w \partial_w,
\]

\[
Y_1 = w \partial_x, \quad Y_2 = x \partial_w, \quad Y_3 = t \partial_w, \quad Y_4 = \partial_w.
\]

These operators can be prolonged on derivatives of \(w \). After substitution

\[
w_x = -m, \quad w_t = r, \quad w_{xx} = -ρ, \quad w_{xt} = ρu, \quad w_{tt} = -p - ρu^2,
\]

this algebra can be regarded as a symmetry algebra of (2) extended on some of the variables \(r, m, w \) defined by

\[
m_x = ρ, \quad m_t = -ρu, \quad r_x = ρu, \quad r_t = -p - ρu^2, \quad w_x = -m, \quad w_t = r.
\]
We have \(X_1 \rightarrow \partial_t, \ X_2 \rightarrow \partial_x, \ X_3 \rightarrow t\partial_t - u\partial_u - 2p\partial_p, \ X_4 \rightarrow t\partial_x + \partial_u, \ X_5 \rightarrow x\partial_x - 2p\partial_p + u\partial_u, \ X_6 \rightarrow \rho\partial_p + p\partial_p, \ Y_1 \rightarrow w\partial_x + (r - mu)\partial_u + 3mp\partial_p + mp\partial_p + mr\partial_r + m^2\partial_m, \ Y_2 \rightarrow x\partial_w - \partial_m, \ Y_3 \rightarrow t\partial_w + \partial_r, \ Y_4 \rightarrow \partial_w. \)

Operators \(X_i \) are well-known point symmetry operators of (2). Operators \(Y_2, Y_3, Y_4 \) are trivial. The operator \(Y_1 \) generates the nontrivial nonlocal symmetry group of (2) which cannot be found in both Euler and Lagrange mass coordinates. Note that for the gas dynamic equations in mass Lagrange coordinates, it is not necessary to introduce \(w \) to retain this operator.

The corresponding group-invariant solution of (2) can be written down in the form

\[
p = \frac{\beta}{(2\delta)^{1/2}} \left(x_0 - x + ct - \frac{\beta t^2}{2} \right)^{-1/2}, \]

\[
\rho = \frac{\delta}{(2\delta)^{3/2}} \left(x_0 - x + ct - \frac{\beta t^2}{2} \right)^{-3/2}, \]

\[
u = c - \beta t,
\]

where \(\beta, \delta, c, x_0 \) are constant. Since \(\beta > 0 \), this solution exists only for a finite period of time.

When \(\gamma = 3 \), the symmetry algebra of (10) is extended by \(X_7 = t^2\partial_t + tx\partial_x + tw\partial_w \), which gives the well-known operator \(x t\partial_x + t^2\partial_t - t\rho\partial_p + (x - tu)\partial_u - 3tp\partial_p \). It is interesting that the case \(\gamma = -1 \) is not classifying for (10), but \(\gamma = 0 \) gives extra operators \(Z_1 = t^2\partial_x, \ Z_2 = t^2\partial_w, \ Z_3 = \frac{t^2}{2}\partial_t + tx\partial_x + tw\partial_w. \)

References

