Two-Point Boundary Optimization Problem for Bilinear Control Systems

Alla V. VINOGRADSKAYA

Kyïv University, Department of Cybernetics

Abstract

This paper presents a new approach to the optimization problem for the bilinear system

\[\dot{x} = \{x, \omega\} \] (1)

based on the well-known method of continuous parametric group reconstruction using of its structure constants defined by the Brockett equation

\[\dot{z} = \{z, \omega\}. \] (2)

Here \(x \) is the system state vector, \(\{\cdot, \cdot\} \) are the Lie brackets, \(z = \{x, y\} \), \(y \) is the vector of cojoint variables, \(\omega = A^{-1}z \) is the control vector, \(A \) is the inertia matrix.

The quadratic control functional has to reach an extremum at the optimal solution of the equation (2) and the boundary optimization problem is to find such \(z_0 \) that solution (2) makes evolution from the state \(x(t_0) = x_0 \) up to the final state \(x(t_1) = x_1 \) during the time delay \(T = t_1 - t_0 \). Therefore it is necessary to define a transformation group of the state space which is parametrized by components of the vector and then to solve the Cauchy problem for an arbitrary smooth curve joining \(x(t_0) \) with \(x(t_0) \).

Key words. Bilinear system, Lie group, optimization, boundary problem, structure constants.

1 Introduction

Optimization problem with a quadratic quality criterion for smooth a dynamic system

\[\dot{x} = f(x, u), \quad x(t_0) = x_0, \quad x(t_1) = x_1, \] (3)

in many important cases [1, 2] can be reduced to the bilinear form as follows: to find such a control \(u : R \rightarrow R^m, \quad u = u(t) \) for the system

\[\dot{x} = \left(\sum_{\mu=1}^m H_\mu u_\mu \right) x, \] (4)

where \(H_\mu \) are matrices generating the Lie group \(G \) defined by \(f(x, u) \), that the state vector \(x \) varies from \(x_0 = x(t_0) \) to \(x_1 = x(t_1) \) and a loss functional riches a minimum. Brockett (1973) in [2] proposed instead of the equation for adjoint variable \(y \) another one for the commutator \(z = \{x, y\} \) as follows

\[\text{Copyright } \odot 1997 \text{ by Mathematical Ukraina Publisher.} \]
\[\text{All rights of reproduction in any form reserved.} \]
\[\dot{z} = \{z, A^{-1}z\}, \quad (5) \]

where a matrix \(A \) can be expressed in terms of \(H_\mu \). Eliminating \(u_\mu \) on the basis on the Pontryagin maximum principle and expressing it via \(z \) yield the next two-point boundary problem. To find such \(z = z(t) \) that the system

\[\dot{x} = \{x, A^{-1}z\} \quad \text{(6)} \]

in the force of (4) brings the state vector \(x \) from \(x(t_0) = x_0 \) to \(x(t_1) = x_1 \) during the time delay \(T = t_1 - t_0 \) which depends on coefficients of the quadratic loss functional.

An approach explained below gives global optimum in the case of a compact \(G \), otherwise a final compact approximation is necessary. Note that an usual linearization procedure applied to (3) gives only local optimum in all cases.

2 Main results

The optimization of bilinear system (6) is based on the well-known restoration method of continuous parametric group involving its structure constants defined from the Brockett equation (5).

Accordingly, we are to define a transformation group of the state space which is parametrized by the components of vector \(z_0 \). In the basis matched with the structure of the Lie algebra, we obtain that the equation (5) has the following form

\[\dot{z}_\alpha = \sum_{\beta, \gamma=1}^{n} \frac{C_{\alpha}^{\beta\gamma}}{I_\gamma} z_\beta z_\gamma, \quad (7) \]

where \(C_{\alpha}^{\beta\gamma} \) are structural constants, \(I_\gamma \) are eigenvalues of the matrix \(A \).

The linear system, together with (7)

\[\dot{x}_\alpha = \sum_{\beta=1}^{n} \sum_{\gamma=1}^{n} \frac{C_{\alpha}^{\beta\gamma}}{I_\gamma} x_\beta z_\gamma, \quad (8) \]

is considered.

Under given \(z_0^j = z_j(t_0) \), \(x_0^j = x_j(t_0) \) one can represent a partial solution of a system (8) in the form

\[x_\alpha(t) = \sum_{\beta=1}^{n} S_{\alpha\beta}(t, t_0; z_0^\gamma) x_\beta^0; \quad (9) \]

where \(S_{\alpha\beta}(t, t_0; z_0^\gamma) \) are elements of a fundamental matrix. The transformation (9) preserves a scalar product being a space rotation. If \(\tilde{x}_\alpha^0 = z_\alpha^0 \), the solution of a system (7) has the similar form

\[z_\alpha(t) = \sum_{\beta=1}^{n} S_{\alpha\beta}(t, t_0; z_0^\gamma) z_\beta^0. \quad (10) \]
As fixed $z_0^\gamma (\gamma = 1, n)$, equation (7) defines variable coefficients of equation (8) and the fundamental matrix. Changing t, we obtain a one-parameter set of rotation of a space over a fixed point, the origin of coordinates. Fundamental matrices satisfy the group relations

$$
\sum_{\beta_1=1}^n S_{\alpha \beta_1} (t_2, t_1; z_0^\gamma) S_{\beta_1 \beta} (t_1, t_0; z_0^\gamma) = S_{\alpha \beta} (t_2, t_0; z_0^\gamma), \quad S_{\alpha \beta} (t, t_0; z_0^\gamma) = \delta_{\alpha \beta}
$$

and create a one-parameter Lie group according to time t. We note that system (7), (8) is invariant under the change of variables

$$
t = \tau T, \quad z_0^\gamma = \frac{\zeta_0^\gamma}{T}
$$

and, consequently, its fundamental matrix

$$
S_{\alpha \beta} \left(\tau T, \tau_0 T; \frac{z_0^\gamma}{T} \right) = S_{\alpha \beta} (t, t_0; z_0^\gamma)
$$

do not change.

If we take $\delta_{\beta_1 \beta}$ instead of x_0^α, then after substitution (9) and (10) for (8) we obtain

$$
\frac{\partial}{\partial t} S_{\alpha \beta_1} (t, t_0; z_0^\gamma) = \sum_{\beta=1}^n \sum_{\gamma=1}^n C_{\alpha \beta}^\gamma I_\gamma S_{\beta \beta_1} (t, t_0; z_0^\gamma) \sum_{\gamma_1=1}^n S_{\gamma \gamma_1} (t, t_0; z_0^\gamma) z_0^\gamma.
$$

The variety of fundamental matrices $\| S_{\alpha \beta} (t, t_0; z_0^\gamma) \|$ under all possible $z_0^\gamma \in R^n$ and fixed $t = t_1 = t_0 + T$ forms a subgroup of the group $SO(n)$ i.e., the group of rotation of n-dimensional space.

By virtue of the change (13), it is sufficient to prove that the subgroup of $SO(n)$ is formed by matrices $S_{\alpha \beta} (t, t_0; z_0^\gamma)$ under every $t \in R$, $z_0^\gamma \in S^n$, where S^n is a unit sphere in R^n:

$$
\sum_{\gamma=1}^n (z_0^\gamma)^2 = 1.
$$

Let z_0^γ be directive cosines of a unit vector in R^n. Fixing ζ and changing t, we get the one-parameter set of matrices

$$
\{ \| S_{\alpha \beta} (t, t_0; z_0^\gamma) \| \}.
$$

Since $\sum_{\beta_1=1}^n S_{\alpha \beta_1} (t_0, t_1; z_0^\gamma) S_{\beta_1 \beta} (t_1, t_0; z_0^\gamma) = \delta_{\alpha \beta}$, then the variety of matrices (14) forms a group G isomorphic to the group $SO(n)$. Choose $\vec{\zeta}_\mu$ as a unit vector with components $\zeta_\mu \gamma_1 = \delta_{\mu \gamma_1} (\mu, \gamma_1 = 1, n)$.

Then by (13) the infinitesimal matrices of corresponding one-parameter groups will have the following elements

$$
I^\mu_{\alpha \beta_1} = \lim_{t \to t_0} \frac{\partial}{\partial t} S_{\alpha \beta_1} (t, t_0; \vec{\zeta}_\mu) = \sum_{\beta=1}^n \sum_{\gamma=1}^n C_{\alpha \beta}^\gamma I_\gamma \delta_{\beta \beta_1} \sum_{\gamma_1=1}^n \delta_{\gamma \gamma_1} \delta_{\mu \gamma_1} = \frac{C_{\alpha \beta_1 \mu}}{I_\mu}.
$$
Compose a commutator and determine the structural constants of the group G

$$
\sum_{\delta=1}^{n} (I_{\alpha \beta} \Gamma_{\delta \beta}^{\gamma} - I_{\alpha \delta} \Gamma_{\beta \gamma}^{\delta}) = \frac{1}{I_{\gamma_1} I_{\gamma_2}} \sum_{\delta=1}^{n} (C_{\gamma_1 \delta} C_{\delta \gamma_2} - C_{\gamma_1 \delta} C_{\gamma_2 \delta}) = \frac{1}{I_{\gamma_1} I_{\gamma_2}} \sum_{\delta=1}^{n} (C^{\alpha \delta} C_{\delta \gamma_2}^{\gamma_1} - C^{\alpha \delta} C_{\gamma_2 \delta}^{\gamma_1})
$$

$$
C^{\alpha \beta}_{\gamma_1} C_{\delta \gamma_2}^{\gamma_1} = - \frac{1}{I_{\gamma_1} I_{\gamma_2}} \sum_{\delta=1}^{n} C_{\gamma_1 \delta} C_{\delta \gamma_2}^{\gamma_1} = \sum_{\gamma_3=1}^{n} \frac{I_{\gamma_3}}{I_{\gamma_1} I_{\gamma_2}} C_{\gamma_3 \gamma_2}^{\gamma_1} C^{\alpha \beta}_{\gamma_3} = \sum_{\gamma_3=1}^{n} A_{\gamma_3}^{\gamma_1 \gamma_2} I_{\alpha \beta}^{\gamma_3}.
$$

For them Jacobi’s identity is fulfilled

$$
\sum_{s=1}^{n} (A^{i s}_{p s} A^{j k}_{s} + A^{j s}_{p s} A^{k i}_{s} + A^{k s}_{p s} A^{i j}_{s}) = \sum_{s=1}^{n} \frac{I_{p}}{I_{s} I_{k} I_{k}} C^{i s}_{p s} C^{j k}_{s} I_{s} I_{k} I_{k} + \frac{I_{p}}{I_{s} I_{t} I_{k}} C^{k s}_{p s} C^{i j}_{s} I_{s} I_{k} I_{k} + \frac{I_{p}}{I_{s} I_{t} I_{k}} C^{k s}_{p s} C^{i j}_{s} I_{s} I_{k} I_{k} = 0. \quad (16)
$$

These infinitesimal operators form a dimensional Lie algebra. Its corresponding group is the n-parametrized Lie group G with $z(t; \gamma; \vec{x}_0)$ as parameters.

A matrix $V_{a \beta}(z(t))$ of the adjoint representation of a group formed by fundamental matrices $\| S_{a \beta}(t_0 + T, t_0; z(t)) \|$ is determined according to [3] by the solution $W_{a \beta}$ of the following linear system of differential equations with constant coefficients

$$
dW_{a \beta}/dt = \delta_{a \beta} + \sum_{i=1}^{n} \sum_{j=1}^{n} Z^{i}_{a \beta} W_{j a}
$$

under the initial condition $W_{a \beta}(t_0; z(t_0)) = 0, (t = 0) \ (a, \beta, \gamma = 1, n)$, where $V^0_{a \beta}(z(t_0)) = W_{a \beta}(T, z(t_0))$. For restoration of a n-parameter group by means of structural constants, it is necessary to solve the Cauchy problem for a system (17).

According to [4] for the solution of an initial boundary-value problem, we need to solve also the second Cauchy problem for a system of linear equations in partial derivatives

$$
\partial \Gamma_{\alpha \beta}(\vec{\zeta})/\partial \vec{\zeta} = \sum_{\beta=1}^{n} \sum_{\mu=1}^{n} V^\mu_{a \beta}(\vec{\zeta}) \int^0_{\beta} (\vec{\zeta}) r^\beta(\vec{\zeta}) |_{\vec{\zeta}=0} = x_0, \quad \vec{\zeta} = \vec{\zeta}(S). \quad (18)
$$

For this, the trajectory connecting \vec{x}_0 and \vec{x}_1 in R^n is given and a Riemann connexion is introduced

$$
\Gamma_{\alpha \beta}(\vec{\zeta}) = - \sum_{\mu=1}^{n} \int^0_{\beta} (\vec{\zeta}) V^\mu_{a \beta}(\vec{\zeta}).
$$

Then the Cauchy problem for equation (18) can be reduced to the definition $\vec{\zeta}(S), s \in [0, 1]$, from the equation

$$
\frac{dr^\alpha(S)}{dS} - \sum_{\beta=1}^{n} \sum_{\gamma=1}^{n} \Gamma^\alpha_{\gamma \beta}(\vec{\zeta}) r^\gamma(S) \frac{dc^{\beta}}{dS} = 0; \quad \vec{\zeta}(0) = 0. \quad (19)
$$

The solution of a boundary-value optimization problem is obtained by integrating a system (6) with the initial condition $z(0) = \zeta(1)$. The approach proposed uses no iterative procedures and is applicable for solving the optimal control problems in a real time scale.
3 Conclusion

The analysis fulfilled above of the system with a multiplicative control demonstrated the following possibilities.

1. Construction of the Lie group representation basis with a minimum dimension.

2. Reduction of the two-point boundary optimization problem to Cauchy one for an auxiliary system which has to be integrated along a smooth fixed trajectory joining given points in the state space of the system.

3. Practically such a method is applicable for a real-time on-board control.

References

