Meteors and Celestial Dynamics

D. Kastinen 1,2

¹Department of Computer Science, Electrical and Space Engineering Luleå University of Technology

²Swedish Institute of Space Physics, Kiruna

January 25, 2017

Luleå University of Technology

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Software and application 000 0000

Outline

1 Introduction

- The scenario
- The modeling

2 Theory

Hamiltonian mechanics

- Hamiltonian splitting
- Deterministic chaos
- Some of the statistics
- 3 Software and application
 - Software design
 - 21P/Giacobini-Zinner

< □ > < 同 >

Meteors and Celestial Dynamics

Introduction
0000

The scenario

Introduction The scenario The modeling

2 Theory

Hamiltonian mechanics

- Hamiltonian splitting
- Deterministic chaos
- Some of the statistics
- 3 Software and application
 - Software design
 - 21P/Giacobini-Zinner

Image: Image:

Introduction
0000

The scenario

Credits: NASA

(□ ▶ 《**⊡** ▶ 《 문 ▶ 《 문 ▶ 》 문 《) Q ()

Luleå University of Technology

Meteors and Celestial Dynamics

The scenario

Formation of meteoroid streams

URL:

https://www.youtube.com/watch?v=KsLGKgdVBHQ&feature=youtu.be

D. Kastinen Meteors and Celestial Dynamics

The scenario

Name that space rock

Luleå University of Technology

Introduction
•0000000000

The modeling

2 Theory

Hamiltonian mechanics

- Hamiltonian splitting
- Deterministic chaos
- Some of the statistics
- 3 Software and application
 - Software design
 - 21P/Giacobini-Zinner

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction ○○○○ ○●○○○○○○○○○○	Theory 0000000000000 0000000000000 00000 00000	Software and application 000 0000
The modeling		

Introduction ○○○○ ○○●○○○○○○○○	Theory 0000000000000 0000000000000 00000 00000 00000	Software and application 000 0000
The modeling		

æ

Meteors and Celestial Dynamics

Introduction 0000 0000000000	Theory 0000000000000 000000000000 00000 00000	Software and application 000 0000
The modeling		

The setup

D. Kastinen Meteors and Celestial Dynamics Luleå University of Technology

æ

Introduction ○○○○ ○○○○●●○○○○○○	Theory 0000000000000 000000000000 00000 00000	Software and application 000 0000
The modeling		

The setup

Introduction ○○○○ ○○○○○●○○○○○	Theory 0000000000000 000000000000 00000 00000	Software and application 000 0000
The modeling		

Luleå University of Technology

Meteors and Celestial Dynamics

Introduction ○○○○ ○○○○○○○○○○○○	Theory 0000000000000 000000000000 00000 00000	Software and application 000 0000
The modeling		

The setup

Luleå University of Technology

The modeling

What to focus on !?

Software execution time

D. Kastinen

Meteors and Celestial Dynamics

Luleå University of Technology

æ

 Software and application 000 0000

Hamiltonian mechanics

1 Introduction

- The scenario
- The modeling

2 Theory

Hamiltonian mechanics

- Hamiltonian splitting
- Deterministic chaos
- Some of the statistics
- 3 Software and application
 - Software design
 - 21P/Giacobini-Zinner

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 Software and application 000 0000

Hamiltonian mechanics

Non-Hamiltonian perturbations

Gravity

- Newtonian (Hamiltonian)
- General relativity

Electromagnetic

- Photo/Plasma Poynting Robertson effect
- Yarkovsky effect
- YORP effect
- Radiation pressure

< 口 > < 同

 Software and application 000 0000

Hamiltonian mechanics

Differential equation flow

Let us assume a set of time dependant variables $\mathbf{x}(t)$ in a phase space M

$$\mathbf{x}(t) = \Psi_t \mathbf{x}(0), \tag{1}$$

$$\Psi_t: M \mapsto M. \tag{2}$$

The flow Ψ_t is not always known. Thus we try to find maps, Φ , to approximate this flow, e.g. with discrete steps

$$\Phi_h : (\mathbf{x}_n) \mapsto (\mathbf{x}_{n+1}) \tag{3}$$

Image: A math a math

Software and application 000 0000

Hamiltonian mechanics

A phase space M is constructed trough *Generalized coordinates* $q \in X$ and the momentum $p \in T_q^*X$

Luleå University of Technology

< 口 > < 同

Introduction
00000000000

 Software and application 000 0000

Hamiltonian mechanics

Phase space

Informal: $T_x X$ all possible "directions" which one can tangentially pass through x

< 17 >

Software and application 000 0000

Hamiltonian mechanics

Differential forms are a way to describe multi-variable calculus independent of coordinates.

D. Kastinen Meteors and Celestial Dynamics Luleå University of Technology

 Software and application 000 0000

Luleå University of Technology

Hamiltonian mechanics

Differential forms

The tautological one-form is given by (remember tensors in GR)

$$\theta = \sum_{i} p_i \mathrm{d}q^i \tag{4}$$

Taking the exterior derivative of θ gives symplectic two-form (remember bi-vectors in geometric algebra)

$$\omega = \sum_{i} \mathrm{d}\boldsymbol{p}_{i} \wedge \mathrm{d}\boldsymbol{q}^{i} \tag{5}$$

< □ > < 同 >

 Software and application 000 0000

Hamiltonian mechanics

Hamiltonian form

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{F}(\mathbf{x}) \tag{6}$$

Image: A image: A

is on Hamiltonian form if $\mathbf{x} = (q_1 \dots q_N p_1 \dots p_N)^T$, and there exists a function $H(\mathbf{x}, t)$ such that

$$\frac{\mathrm{d}\boldsymbol{q}_{i}}{\mathrm{d}\boldsymbol{t}} = \frac{\partial H}{\partial \boldsymbol{p}_{i}} \,\forall \, i \in 1, \dots, N,$$

$$\frac{\mathrm{d}\boldsymbol{p}_{i}}{\mathrm{d}\boldsymbol{t}} = -\frac{\partial H}{\partial \boldsymbol{q}_{i}} \,\forall \, i \in 1, \dots, N.$$
(8)

Meteors and Celestial Dynamics

 Software and application 000 0000

Luleå University of Technology

Hamiltonian mechanics

Hamiltonian form

But it is deeper than than: any real function T^*X can be interpreted to be a Hamiltonian

Note for all you Lagrangian's out there:

$$L: TM \mapsto F \tag{9}$$

$$H: T^*M \mapsto F \tag{10}$$

< □ > < 同 >

and the Legendre transform $L \mapsto H$

 Software and application 000 0000

Hamiltonian mechanics

Poisson brackets

Consider a function f and g on M, we can define the Poisson brackets as

$$\{f(\mathbf{x}), g(\mathbf{x})\} = \sum_{i=1}^{N} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right).$$
(11)

< □ > < 同 >

Poisson brackets:

- Form a Lie algebra
- Are linear and anti-commuting in their arguments

Software and application 000 0000

Hamiltonian mechanics

Phase space paths

Full time derivative of a phase space path (governed by H) can be expressed by

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \{\mathbf{x}, H\} + \frac{\partial \mathbf{x}}{\partial t}.$$
(12)

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Luleå University of Technology

Software and application 000 0000

Hamiltonian mechanics

Let us assume $t_0 = 0$. We can show that $\frac{\partial \mathbf{x}}{\partial t} = 0$ and H is autonomous

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{F}(\mathbf{x}) \Rightarrow \frac{\mathrm{d}x_i}{\mathrm{d}t} = \{x_i, H\} = \{\cdot, H\} x_i \Leftrightarrow$$
$$\Leftrightarrow x_i(t) = e^{t\{\cdot, H\}} x_i(0). \tag{13}$$

Luleå University of Technology

Software and application 000 0000

Hamiltonian mechanics

This will propagate our system a time t

$$\mathbf{x}(t) = e^{t\{\cdot, H\}} \mathbf{x}(0) \tag{14}$$

Image: Image:

Oh... also Taylor expansion

$$f(t_0 + \Delta t) = e^{\Delta t \frac{\mathrm{d}}{\mathrm{d}t}} f(t) |_{t=t_0}, \qquad (15)$$

Luleå University of Technology

Meteors and Celestial Dynamics

 Software and application 000 0000

Hamiltonian mechanics

Symplectic integrator

A set of coordinates are canonical if $\boldsymbol{\theta}$ is preserved

A transformation between two canonical coordinates that preserves the Hamiltonian form is a canonical transformation (symplectomorphism)

Luleå University of Technology

Symplectic integrators preserves the symplectic form, i.e. $\omega(H^hq, H^hp) = \omega(q, p)$

 Software and application 000 0000

Hamiltonian mechanics

Symplectic integrator

Numerical flow is called symplectic if

$$(\mathcal{J}\Phi_h)^T \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} \mathcal{J}\Phi_h = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$$
(16)

< □ > < 同 >

where the Jacobian matrix is

$$\mathcal{J}\mathbf{F}(\mathbf{x}) = \frac{\partial F_i}{\partial x_j} \qquad \forall \ i, j \in \mathbb{N} : 1 \le i \le n, 1 \le j \le m.$$
(17)

Luleå University of Technology

Meteors and Celestial Dynamics

 Software and application 000 0000

Hamiltonian splitting

1 Introduction

- The scenario
- The modeling

2 Theory

Hamiltonian mechanics

Hamiltonian splitting

- Deterministic chaos
- Some of the statistics
- 3 Software and application
 - Software design
 - 21P/Giacobini-Zinner

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Meteors and Celestial Dynamics

Software and application 000 0000

Hamiltonian splitting

Kepler and perturbation

$$H = H_K + H_I \tag{18}$$

< 口 > < 同

but

$$e^{h\{\cdot,H_{K}+H_{I}\}} = e^{h(\{\cdot,H_{K}\}+\{\cdot,H_{I}\})} \neq e^{h\{\cdot,H_{K}\}}e^{h\{\cdot,H_{I}\}}$$
(19)

Luleå University of Technology

D. Kastinen

Meteors and Celestial Dynamics

Theory

Software and application 000 0000

Hamiltonian splitting

However

$$e^{h(\{\cdot,H_{\mathcal{K}}\}+\{\cdot,H_{\mathcal{I}}\})} \approx e^{h\{\cdot,H_{\mathcal{K}}\}}e^{h\{\cdot,H_{\mathcal{I}}\}}$$
(20)

< □ > < 同 >

So how does this help?

Luleå University of Technology

Meteors and Celestial Dynamics

Theory

Software and application 000 0000

Hamiltonian splitting

The actual split

only $e^{h\{\cdot,H_{K}\}}$: system integrable only $e^{h\{\cdot,H_{I}\}}$: system integrable so

$$\mathbf{x}_{\mathcal{K}}(h) = e^{h\{\cdot, H_{\mathcal{K}}\}} \mathbf{x}(0)$$
(21)
$$\mathbf{x}(h) = e^{h\{\cdot, H_{\mathcal{K}}\}} \mathbf{x}_{\mathcal{K}}(h)$$
(22)

< □ > < 同 >

So we end up with h along one solution and h along the other...

Theory

Software and application 000 0000

Hamiltonian splitting

So order must matter? How do you show accuracy? How do you ensure symplectic structure? Symmetric $\Phi_h = \Phi_{-h}^{-1}$?

Luleå University of Technology

Introduction	
00000000000	

Theory

Software and application 000 0000

Hamiltonian splitting

The numerical flow Φ is of order *p* if the Taylor expansion match real flow Ψ to term number *p*.

Consider $H = H_A + H_B$

A B > 4
 B > 4
 B

Theory

Software and application

Hamiltonian splitting

$$e^{h(\{\cdot, H_A\} + \{\cdot, H_B\})} = \sum_{i=0}^{\infty} \frac{h^i(\{\cdot, H_A\} + \{\cdot, H_B\})^i}{i!}$$
(23)

$$e^{h\{\cdot,H_A\}}e^{h\{\cdot,H_B\}} = \left(\sum_{i=0}^{\infty} \frac{h^i\{\cdot,H_A\}^i}{i!}\right) \left(\sum_{i=0}^{\infty} \frac{h^i\{\cdot,H_B\}^i}{i!}\right) \quad (24)$$

› 《 클 ▷ 《 클 ▷ _ 클 · ∽) 역 (Luleå University of Technology

・ロト ・回ト ・目と

Meteors and Celestial Dynamics

Theory

Software and application 000 0000

Hamiltonian splitting

By subtracting the two expressions we can easily see that all first order terms vanish

$$e^{h\{\cdot,H_A\}}e^{h\{\cdot,H_B\}} - e^{h(\{\cdot,H_A\} + \{\cdot,H_B\})} =$$

= Loads of terms and general dizziness =
= $\mathcal{O}(h^2)$ (25)

< □ > < 同 >

 Software and application 000 0000

Hamiltonian splitting

Thus the split

$$e^{h\{\cdot,H_B\}}e^{h\{\cdot,H_A\}} \tag{26}$$

is a first order split (if H_A potential and H_B kinetic it is symplectic Euler integration), however if we instead split

$$e^{\frac{h}{2}\{\cdot,H_{kep}\}}e^{h\{\cdot,H_{l}\}}e^{\frac{h}{2}\{\cdot,H_{kep}\}}$$
(27)

We find the most basic second order split with error $\mathcal{O}(h^3)$

1

where
$$e^{\frac{h}{2}\{\cdot, H_{kep}\}}$$
 drifts along a Kepler orbit
and $e^{h\{\cdot, H_I\}}$ kicks the momentum
(astinen Luleå University of Technology

Meteors and Celestial Dynamics

D. ł

Theory

Software and application 000 0000

Hamiltonian splitting

Shorter notation: $e^{h\{\cdot,H_A\}} = H_A^h$

$$H_{a}^{a_{1}}H_{b}^{b_{1}}H_{a}^{a_{2}}H_{b}^{b_{2}}H_{a}^{a_{3}}H_{b}^{b_{3}}H_{a}^{a_{4}}H_{b}^{b_{4}}H_{a}^{a_{5}}H_{b}^{b_{4}}H_{a}^{a_{4}}H_{b}^{b_{3}}H_{a}^{a_{3}}H_{b}^{b_{2}}H_{a}^{a_{2}}H_{b}^{b_{1}}H_{a}^{a_{1}}$$
(28)

is a 8 order $H = H_a + H_b$ split

D. Kastinen Meteors and Celestial Dynamics Luleå University of Technology

 Software and application 000 0000

Hamiltonian splitting

With numerical values of the coefficients as

 $H^h =$

Luleå University of Technology

 $\begin{array}{l} a_1 = 0.03809449742241219545697532230863756534060h\\ a_2 = 0.1452987161169137492940200726606637497442h\\ a_3 = 0.2076276957255412507162056113249882065158h\\ a_4 = 0.4359097036515261592231548624010651844006h\\ a_5 = -0.6538612258327867093807117373907094120024h\\ b_1 = 0.09585888083707521061077150377145884776921h\\ b_2 = 0.2044461531429987806805077839164344779763h\\ b_3 = 0.2170703479789911017143385924306336714532h\\ b_4 = -0.01737538195906509300561788011852699719871h \end{array}$

Software and application 000 0000

Hamiltonian splitting

Time to go even more nuts: Shorter notation *D* stands for drift *K* for kick and *L* for linear drift (barycenter)

D. Kastinen Meteors and Celestial Dynamics Luleå University of Technology

< □ > < 同 >

Theory

Software and application 000 0000

Hamiltonian splitting

Goal: different timezones, while still preserving symplectic map

One way: find arbitrary sub-splits and construct the integrator

D. Kastinen Meteors and Celestial Dynamics Luleå University of Technology

< □ > < 同 >

Theory ○○○○○○○○○○○○○○ ○○○○○ ○○○○○ Software and application 000 0000

Hamiltonian splitting

If we denote K_{ij} as the interaction Hamiltonian between zone *i* and *j* we can construct a 3 time zone integrator.

This works due to transition functions to smoothly transfer objects from one time zone to another.

Image: Image:

Theory

Software and application 000 0000

Hamiltonian splitting

Time zone splits

$$H^{h} = L^{h/8} K_{00}^{h/8} D_{0}^{h/4} K_{00}^{h/8} L^{h/8}$$

$$K_{01}^{h/4} K_{11}^{h/4} D_{1}^{h/2} K_{11}^{h/4} K_{01}^{h/4}$$

$$L^{h/8} K_{00}^{h/8} D_{0}^{h/4} K_{00}^{h/8} L^{h/8}$$

$$K_{02}^{h/2} K_{12}^{h/2} K_{22}^{h/2} D_{2}^{h} K_{22}^{h/2} K_{12}^{h/2} K_{02}^{h/2}$$

$$L^{h/8} K_{00}^{h/4} K_{00}^{h/4} K_{00}^{h/8} L^{h/8}$$

$$K_{01}^{h/4} K_{11}^{h/4} D_{1}^{h/2} K_{11}^{h/4} K_{01}^{h/4}$$

$$L^{h/8} K_{00}^{h/8} D_{0}^{h/4} K_{00}^{h/8} L^{h/8}.$$
(30)

O > <
 O >

Luleå University of Technology

Meteors and Celestial Dynamics

Theory

Software and application 000 0000

Deterministic chaos

1 Introduction

- The scenario
- The modeling

2 Theory

Hamiltonian mechanics

- Hamiltonian splitting
- Deterministic chaos
- Some of the statistics
- 3 Software and application
 - Software design
 - 21P/Giacobini-Zinner

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Meteors and Celestial Dynamics

Software and application 000 0000

Deterministic chaos

Luleå University of Technology

2

Introduction
00000000000

 Software and application 000 0000

Deterministic chaos

I.e. in 1998 sample of Jupiter family comets (JFCs) and near-Earth asteroids (NEAs): Found to have Lyapunov times between 50 and 150 yr

$$|\delta \mathbf{x}(t)| \approx e^{\lambda t} |\delta \mathbf{x}(0)| \tag{31}$$

where Lyapunov time $T = \lambda^{-1}$ is the time for e^1 divergence to occur.

Software and application 000 0000

Deterministic chaos

If $\mathcal{T}=100~\text{yr}$ then errors in a 300 yr simulation \approx 20 times enlarged

Luleå University of Technology

Theory

Software and application

Deterministic chaos

Variational flow on the tangent space

The deviation vector $w(t) \in TM$ defined as

$$w(t) = \delta x_i(t) \ \forall \ i \in [1, 2N], \tag{32}$$

variation of differential equation flow $D_x \Phi_t$ with respect to the phase space trajectory

$$D_x \Phi_t : T_{x(0)} M \mapsto T_{x(t)} M.$$
(33)

< □ > < 同 >

Luleå University of Technology

Meteors and Celestial Dynamics

 Software and application 000 0000

Some of the statistics

1 Introduction

- The scenario
- The modeling

2 Theory

Hamiltonian mechanics

- Hamiltonian splitting
- Deterministic chaos
- Some of the statistics
- 3 Software and application
 - Software design
 - 21P/Giacobini-Zinner

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Meteors and Celestial Dynamics

Introd	
0000	0000000

 Software and application 000 0000

Some of the statistics

The actual research

Mostly clever use of statistics and not that much math (yet)

E.g Output distributions that at infinite sampling are invariants of parts of input distributions

< □ > < 同 >

 Software and application 000 0000

Some of the statistics

The actual research

Some of the stuff I scribbled yesterday

$$((\chi, \varrho), \tau, \mu) \sim (F, G, T, M), \tag{34}$$

$$(\chi, \varrho) \in M, \tau \in \mathbb{T}, \mu \in \mathbb{M},$$
 (35)

$$f \propto \dot{M} \propto r^{-2}.$$
 (36)

Derived general result that

$$f(\nu) = \frac{(1 + e \cos \nu)^2}{\pi (2 + e^2)}.$$
(37)

D. Kastinen Meteors and Celestial Dynamics

 Software and application 000 0000

Some of the statistics

MC example

Luleå University of Technology

Meteors and Celestial Dynamics

Theory

Software and application 000 0000

Luleå University of Technology

Some of the statistics

Statistical Uncertainty Orbital Clones

Adopted from "OpenOrb: Open-source asteroid orbit computation software including statistical ranging" by GRANVIK et al

D. Kastinen

Meteors and Celestial Dynamics

Software and application 000 0000

Some of the statistics

Uncertainty example

Luleå University of Technology

Meteors and Celestial Dynamics

Introduction
00000000000

Software design

1 Introduction

- The scenario
- The modeling

2 Theory

Hamiltonian mechanics

- Hamiltonian splitting
- Deterministic chaos
- Some of the statistics

< 17 >

- 3 Software and application
 - Software design21P/Giacobini-Zinner

Luleå University of Technology

Meteors and Celestial Dynamics

Introd	
0000	

Software and application $0 \bullet 0$ $0 \circ 0 \circ 0$

Software design

Modular toolbox

mercury6: ~ 8 000 rows

・ロト ・回 ト ・ ヨト ・

D. Kastinen Meteors and Celestial Dynamics

Introd	
0000	

Software design

Program flow

D. Kastinen Meteors and Celestial Dynamics

Introduction
00000000000

21P/Giacobini-Zinner

1 Introduction

- The scenario
- The modeling

2 Theory

Hamiltonian mechanics

- Hamiltonian splitting
- Deterministic chaos
- Some of the statistics
- 3 Software and application
 - Software design
 - 21P/Giacobini-Zinner

< 17 >

Introd	
0000	0000000

Software and application $\circ\circ\circ$ $\circ\circ\circ\circ\circ$

21P/Giacobini-Zinner

Probability distributions 2011

Earth-trail encounter probability distribution during 2011

Meteors and Celestial Dynamics

Introd	
0000	0000000

Software and application $\circ\circ\circ$ $\circ\circ\circ\circ\circ\circ\circ$

21P/Giacobini-Zinner

Probability distributions 2012

Earth-trail encounter probability distribution during 2012

D. Kastinen

Meteors and Celestial Dynamics

Introd	
0000	0000000

21P/Giacobini-Zinner

Mass difference

Normalized difference in mass distribution 2011 - 2012

D. Kastinen Meteors and Celestial Dynamics Luleå University of Technology

< 口 > < 同