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Abstract

Ecological modeling is becoming increasingly more important for mod-

ern engineers. The mathematical language of dynamical systems has been

applied by engineering since ancient times. In this seminar we introduce

and discuss some main methods for studying dynamical systems, in par-

ticular for the analysis of nonlinear systems of predators and preys. We

show how important results can be obtained by simple methods that are

based on elementary mathematics. Most models of predators and preys

indicate cycles where populations are becomming unrealisticly small. We

point out that Deterministic Models are heavily criticised, e.g. amongst

Swedish specialists in stochastics. On the other hand, subarctic biologists

confirm that predators are not behaving stochasticly, but rather switching

feeding between species. This leads to dynamical systems with switches,

also well known in other engineering applications. To conclude, we will

also mention some challenging open problems in this subject.

Outline

1. Lotka-Volterra equations

2. Rosenzweig equations

3. Two predators - one prey

4. More predators - one prey

5. Modifications for realistic behaviour
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Lotka-Volterra equations

s′ = as− bxs, x′ = −cx + dxs

s - prey, x - predator, derivative with resp to time

Assumptions

1. The prey population finds ample food at all times.

2. The food supply of the predator population depends
entirely on the size of the prey population.

3. The rate of change of population is proportional to

its size.

4. During the process, the environment does not change
in favour of one species and genetic adaptation is

inconsequential.

5. Predators have limitless appetite.

Math

Integral

V (s, x) = ds− c ln s+ bx− a ln x

Solutions closed curves V (s, x) = const.
Equilibrium

(

c
d ,

a
b

)

- center
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Figure 1: a=1,b=2, c=1, d=1

Trajectories of Lotka-Volterra equations
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Figure 2: a=1,b=2, c=1, d=1

Solutions of Lotka-Volterra equations

4



Rosenzweig-McArthur equations

s′ = as
(

1−
s

K

)

−
bxs

1 + As

x′ = −cx+
dxs

1 +As

Notation: α = Ac
d , ǫ =

c
Kd.

1. Predator cannot survive if either condition α > 1 is
satisfied or both conditions α < 1 and ǫ > 1− α are

satisfied

2. If α < 1 and α−α2

1+α
< ǫ < 1 − α the system has

a stable equilibrium as global attractor where the
species coexist.

3. If α < 1 and ǫ < α−α2

1+α the system has a stable unique

cycle as global attractor.

Time change t = τ
A
and special choice of parameters

K = b = 1, A =
1

a
, c = λ, d = 1 +

λ

a
give equations (we call it standard system)

ṡ = s

(

1− s−
x

s+ a

)

ẋ =
s− λ

s+ a
x
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Figure 3: a=1, b=1, c=1, d=1,K=10,A=0.2

Globally attracting limit cycle
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Figure 4: a=1, b=1, c=1, d=1,K=4,A=0.2

Globally attracting equilibrium
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Figure 5: a=1,b=1, c=1, d=1,K=1.1,A=0.2

Extinction of predator
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Figure 6: a=1,b=1, c=3, d=1,K=1.5,A=0.5

Strong extinction of predator

9



Mathematical tools

Topological equivalence

Two dynamical systems are topologically equivalent, if
there is a homeomorphism h mapping orbits of system 1

to orbits of system 2 homeomorphically, and preserving
orientation of the orbits.

Grobman-Hartman Theorem

If J is the Jacobian matrix at an equilibrium and

the real parts of the eigenvalues of J are non-zero, then
there is a neighbourhood of the equilibrium in which the

system is topologically equivalent to the linear system
x′ = Jx given by the Jacobian matrix.

We differ between three types of equilibria:

• sinks (stable), eigenvalues are real less than zero (nodes),

or complex with negative real parts (focus)

• sources, eigenvalues are real greater than zero (nodes),

or complex with positive real parts (focus)

• saddles, real parts of eigenvalues have different signs,
attracts in some directions and repelling in some di-

rections
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Standard system after a change in time takes form

x′ = (s− λ)x, s′ = (h(s)− x)s, h(s) = (1− s)(s+ a)

Possible equilibria: (0, 0), (0, 1), (h(λ), λ)

General Jacobian matrix is

J =

(

s− λ −x
−s h′(s)s+ h(s)− x

)

J(0, 0) =

(

−λ 0
−0 a

)

(0, 0) - always saddle

J(0, 1) =

(

1− λ 0

−1 −a

)

(0, 1) - stable for λ > 1, saddle for λ < 1

J(h(λ), λ) =

(

0 −h(λ)

−λ 1− a− 2λ

)

(h(λ), λ) - stable for 1−a
2
< λ < 1, source for λ < 1−a

2
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The basin of attraction of a stable equilibrium is the
set of initial conditions for which the trajectory tends to

the equilibrium. To estimate basins of attractions we use
Lyapunov functions.

Theorem. Let V be a function defined in a neigh-
bourhood N of the equilibrium. Suppose in the neigh-

bourhood N

• V (x) ≥ 0

• V ′(x) < 0

• V (x) < c

Then the region M defined by V (x) < c is in the basin

of attraction of the equilibrium.

For standard system:

Using Lotka-Volterra integral as Lyapunov function it
is possible to prove (h(λ), λ) - globally stable for 1−a

2 <

λ < 1
In case λ < 1−a

2 there is a unique globally attracting
limit cycle. Can be proved using Zhang Zhi-fen theo-

rems.
Estimates for the size of the cycle for critical small a

and λ are given in
N L P Lundström, G Söderbacka. Estimates of size of

cycle in a predator-prey system (Manuscript)
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Two predators - one prey

x′ =
s− λ1
s+ a1

x,

y′ =
s− λ2
s+ a2

y,

s′ =

(

1− s−
x

s+ a1
−

y

s+ a2

)

s,

x, y predators, s -prey
ai, λi, i = 1, 2 - positive parameters

Possible equilibria: (0, 0, 0), (0, 0, 1),
((1− λ1)(λ1 + a1), 0, λ1), ((1− λ2)(λ2 + a2), 0, λ2)

Dissipativity.
Theorem. Let V = x/q1 + y/q2 + s, where qi = ai −

λi + 2, i = 1, 2. All solutions of the system starting in

x, y ≥ 0 enter the region {(x, y, s)|V ≤ 1, x, y, s ≥ 0}
and remain there.
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Extinction of one predator

The predator x goes extinct if

λ1 >
a1λ2(a2 + 1)

a1a2 + λ2(a1 − a2) + a2

and the predator y goes extinct in the case λ1 < λ2.

Figure 7: In region 1 predator y goes extinct and x in region 4. An inner solution
exists in regions 2 and 3 and on the boundary between them there is a period
doubling bifurcation.

A V Osipov, G Söderbacka. Extinction and coexis-

tence of predators. To appear in Dynamical Systems.
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Periodic coexistence
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Figure 8: a1 = 0.2, λ1 = 0.2, a2 = 0.036, λ2 = 0.072
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2-periodic coexistence
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Figure 9: a1 = 0.2, λ1 = 0.2, a2 = 0.03, λ2 = 0.06
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Chaotic coexistence
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Figure 10: a1 = 0.2, λ1 = 0.2, a2 = 0.018, λ2 = 0.036
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Poincaré map in Rn. The Poincaré map P is de-
fined on a transversal (n + 1)-dimensional hypersurface

Q (without tangency with trajectories). The image P (x)
is defined as the next intersection with Q of a trajectory

with intial condition x.
Gives possibilities to study the iterates of points under

a map instead of whole trajectories.
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Figure 11: x0 and u0 with images
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Conditions for construction of well defined Poincaré
map on s = 0.1, s′ < 0 are obtained in

A V Osipov, G Söderbacka. Poincaré map construc-
tion for some classical two predators - one prey systems.

Submitted to Internat J of Bifurcation and Chaos.
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Model map

In the case when the Poincaré map is correctly de-

fined, very often there is a strong contraction in the
x+y-direction and it is shown by numerical experiments

and theoretical estimating arguments that the one di-
mensional model map given by

f(v) = β + v −
k1 + k2e

v

1 + ev
u

where β, u and ki are constants and v = ln(y/x) gives a
good approximation.

-10 -5 0 5 10
-10

-5

0

5

10

Figure 12: Model map, b = 10, k1 = 1, k2 = 16, u = 1

20



Bifurcation diagram. The horisontal axis repre-
sents the value of a bifurcation parameter. The vertical

axis represents one coordinate of points on an attractor
for the given value of the bifurcation parameter.
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Figure 13: Bifurcation diagram for a1 = λ1 = 0.1, a2 = 0.03 ν, λ2 = 0.04 ν.
The vertical axis corresponds to the ln(y/x)-coordinates of intersections of tra-
jectories with s = 0.1, s′ < 0. The horisontal axis corresponds to values of
parameter ν.
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Complicated chaotic coexistence

When construction of Poincaré map does not work the

chaotic attractor can be more complicated.
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Figure 14: Inner attractor for a2 = 0.002, λ2 = 0.2, a1 = 0.5, λ1 = 0.33
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Open problem. Can we have more than one attrac-
tor where all species coexist?
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Many predators - one prey

Consider the (n+ 1)-dimensional Osipov system

ẋi = φi(s)xi , ṡ = h(s)−
n

∑

i=1

ψi(s)xi , i = 1, 2, ..., n.

Assume:

A1 : All the considered functions are of the classC2[0,∞),

and the variables xi and s are non-negative:
xi ≥ 0, s ≥ 0.

A2 : ψi(0) = 0, ψ′
i(s) > 0 for s > 0.

Here and further we will suppose, that i takes values
from the set {1, 2, . . . , n}.

A3 : φ′i(s) > 0 for s > 0 and there exists λi > 0 such
that φi(λi) = 0.

A4 : h(0) = h(1) = 0, h′(1) < 0 and h′′(s) < 0 for

s > 0.

A5 : 0 < λn < · · · < λ2 < λ1 < 1.

Results for coexistence obtained in four dimensional
case and for extinction in general case by

A Gunnare, A V Osipov and G Söderbacka

Open problem. It there a possibility for coexistence
even if there is no coexistence in some hyperplanes of

lower dimension.
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Modified standard system

The standard system has cycles with very low popula-

tions for small a and λ. In nature this is not happening
because the predator changes behaviour to feeding on

other preys, where however cannot survive for ever. Be-
cause this change is sudden in Arctic regions (stochastic

in Middle EU) we get a system with switches.
We consider two 3-dimensional systems

s′ =

(

1− s−
x

s+ a1

)

s

z′ = (1− z)z

x′ =
s− λ1
s+ a1

x

s′ = (1− s)s

z′ =

(

1− z −
x

z + a2

)

z

x′ =
z − λ2
z + a2

x

Suppose λ1 <
1−a1
2 (implies cycle) and λ2 > 1 (implies

extinction). The main prey is s, the secondary is z. The

predator feeds on the main prey until density becomes
lower than a limit ǫ− < λ1 and then feeds on z until the

main prey reaches a density of ǫ+, ǫ− < ǫ+ ≤ λ1.

Results: Cycle becomes smaller or chaos arises.

Open problem. Examine the dynamics of systems of
many predators - one prey with this behaviour of the

prey.
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