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Outline of talk

What about Science and Scientific Computing

Linear least-squares

Nonlinear least-squares

Separable least-squares (the variable projection method)

Rigid body movements
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Scientific Computing

Goal

Computational tools for obtaining accurate solutions in short time

Inge Söderkvist Least-Squares Fitting of Model Parameters to Experimental Data



Least-squares fitting

Given:

Data points (ti , yi ), i = 1, . . . ,m.

A model function φx(t) that depends on some unknown
parameters x ∈ Rn, m > n.

Task:
Find parameters x by solving

min
x

m∑
i=1

(φx(ti )− yi )
2.
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φx(t)=x1t+x2sin(t)

(ti,yi)

φx(ti)−yi
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Least-squares fitting, cont

Nice statistical properties when yi = φx(ti ) + ei , ei comes
from the exponential family.

Implies easy computations compared to other measures.

Sensitive to outliers.

Many variants exists: error in variables, total lsqr, weighted
lsqr, constrained lsqr, regularized lsqr,....

Inge Söderkvist Least-Squares Fitting of Model Parameters to Experimental Data



Formulated as a constrained problem

min
x

m∑
i=1

(ỹi − yi )
2,

s.t. φx(ti )− ỹi = 0, i = 1, . . . ,m.
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Linear least-squares

φx(t) depends linearly on x . (Ex: φx(t) = x1t + x2 sin t)

We solve

min
x
‖Ax − y‖2

2, (Ex: A =

 t1 sin(t1)
...

...
tm sin(tm)

)

The solution x̂ = (ATA)−1AT y = A†y satisfies

Ax̂ = Py , ‖Ax̂ − y‖2 = ‖r‖2 = ‖P⊥y‖2

where P and P⊥ are matrices that projects onto R(A) and
onto R(A)⊥, respectively.
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Projections

Let A = QR, Q ∈ Rm×n, QTQ = I , R ∈ Rn×n (qr-decomp)

Ax̂ = Py ⇔ QRx̂ = QQT y ⇔ Rx̂ = QT y

Numerically stable computations ! (e.g., x = A\y in Matlab)
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Linear least-squares in matlab

How to solve minx ‖Ax − y‖2 in matlab ??

1 x = A\y (QR-factorization of A)

2 x = pinv(A) ∗ y (SVD of A)

3 x = (A′ ∗ A)\(A′ ∗ y) ( Cholesky-factorisation of ATA)

4 x = inv(A′ ∗ A) ∗ (A′ ∗ y) (Avoid !!)
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Nonlinear least-squares

φx(t) depends nonlinearly on x , (e.g., φx(t) = ex1t + sin(x2t))

Define fi (x) = φx(ti )− yi .

We minimize

F (x) =
1

2

m∑
i=1

f 2
i (x) =

1

2
‖f (x)‖2

2

using iterative methods, e.g., the Gauss-Newton method.

Inge Söderkvist Least-Squares Fitting of Model Parameters to Experimental Data



Newtons Method

Newtons method for or solving minx F (x) or ∇xF (x) = 0:

k = 0
guess x (0)

Repeat
Compute Hessian matrix H = ∇2F (x (k)) ∈ Rn×n,
Compute gradient g = ∇F (x (k)) ∈ Rn

Solve the linear system of equations Hp = −g
Compute step length β
x (k+1) = x (k) + β p
k = k + 1

Until convergence

Based on F (x (k) + p) ≈ F (x (k)) + pTg + 1
2p

THp.
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Geometry Newtons method

F (x) = k

F (x (k)) + pTg +
1

2
pTHp = k
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Gauss-Newton method

Here: F (x) = 1
2

∑m
i=1 f

2
i (x) = 1

2‖f (x)‖2
2

H = (JT J +
∑

i (fi ∇2
x fi )), g = JT f ∈ Rn,

where J = ∇f (x (k)) ∈ Rm×n is the Jacobian matrix

Hence:

pNew = H−1g = −(JT J +
∑
i

(fi ∇2
x fi ))−1JT f

pGN = −(JT J)−1JT f

Note: pGN solves minp ‖f (x (k)) + Jp‖2 (e.g., p = −J\f in Matlab)
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Gauss Newtons Method

Gauss-Newtons method for or solving ‖f (x)‖2:

k = 0
guess x (0)

Repeat
Compute J = ∇f (x (k)) ∈ Rm×n

Compute f = f (x (k)) ∈ Rm

Solve the linear least squares problem minp ‖f (x (k)) + Jp‖2.
Compute step length β
x (k+1) = x (k) + β p
k = k + 1

Until convergence

Based on ‖f (x (k) + p)‖2 ≈ ‖f (x (k)) + Jp‖2.

F (x (k) + p) ≈ F (x (k)) + pT JT f + 1
2p

T JT Jp.
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Properties of Gauss-Newtons method

Only first order derivatives are needed

pGN is a descent direction if J has full rank.

Asymptotic rate of convergence is linear (quadratic if
f (x̂) == 0)

lim
k→∞

‖x (k+1) − x̂‖
‖x (k) − x̂‖

=
‖f (x̂)‖
ρ

, ρ = radius of curvature.

Converges to local minima

Global properties ????
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Difficulties

How to find initial guess x (0) ?

How to deal with ill-conditioned Jacobians ?

pLM = −(JT J + λI )−1JT f (Levenberg-Marquardt)

min
x

(1− λ) ‖f (x)‖2
2 + λ regularization term

How to deal with slow rate of convergence ?
Use higher order derivatives (Newtons method)
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Separable least-squares

Example: φx(t) = x1e
x3t + x2e

x4t = a1e
b1t + a2e

b2t .

φ depends linearly on a1, . . . , an1

φ depends nonlinearly on b1, . . . , bn2

The least-squares problem is

min
a,b

1

2
‖y − A(b)a‖2

2,

Example:

A(b) =

 eb1t1 eb2t1

...
...

eb1tm eb2tm


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The variable projection method

For a given vector b the solution â satisfies

‖y − A(b)â‖2 = ‖P(b)⊥y‖2, (P(b)⊥ projects onto R(A(b))⊥)

The original problem has been transformed to

Nonlinear projected problem

min
b

1

2
‖P(b)⊥y‖2

2,
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The variable projection method

min
b

1

2
‖P(b)⊥y‖2

2,

The dimension of the problem is n2 instead of n1 + n2

Can be solved with standard methods (GN,New). How to
obtain derivatives ??

Asymptotic convergence with GN is almost the same as when
applying GN on the original problem (Ruhe,Wedin, 1980).

Global properties ???
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How to find derivatives

Notation: Ci = ∂C(b)
∂bi

, Cij = ∂2C(b)
∂bi∂bj

.

P⊥i = −P⊥AiA
† − (P⊥AiA

†)T , i = 1, . . . , n2 .

(Golub, Pereyea, 1973). Last term can be ignored.

P⊥ij = −Bij − BT
ij , i , j = 1, . . . , n2, where

Bij = −PjAiA
† + P⊥AijA

† + P⊥AiA
†((AjA

†)TP† − AjA
†)

(Borges 2009).
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The Jacobian matrix, J , of r = P(b)⊥y

Let

P⊥i ≈ −P⊥AiA
†

Q ∈ Rm×n1 be an orthogonal base for R(A(b)).

â = A†y

J(:, i) = −P⊥i y = −P⊥AiA
†y = −(I − QQT )Ai â
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Examples of separable nonlinear least squares problems

Sums of exponentials

NURBS

Rigid body movements
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Sum of exponentials

φa,b(t) =
N∑
i=0

aie
bi t

Literature reports global benefits using the variable projection
method.
(see e.g., Golub ,Pereyra 2003 and references therein)
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NURB-curves

c(t) =

n∑
i=0

Bi (t)wipi

n∑
i=0

Bi (t)wi

= φa,b(t) =

n∑
i=0

Bi (t)ai

n∑
i=0

Bi (t)bi

,

The variable projection method is most often slower than
using the unseparated formulation. (see Bergström,
Söderkvist, 2012)
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Rigid body movements

min
R,d

m∑
i=1

‖Rpi + d − qi‖2
2

s.t. RTR = I , det(R) = 1

Separable least-squares problem with special structure. No
standard iteration is needed.

Applications in orthopedics, robotics, computer vision, reverse
engineering, automatic shape verification, etc..

Determining the movements of the skeleton using
well-configured markers by I Söderkvist, PÅ Wedin, Journal of
biomechanics, 1993 . Over 600 citations
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Rigid body movements, cont.

The orthogonal Procrustes problem

d = q − Rp

min
R∈Ω
‖RA− B‖F

where A = (p1 − p, . . . , pm − p), B = (q1 − q, . . . , qm − q)

Solved using SVD, UΣV T = BAT ∈ R3×3, R = UV T

Efficient and stable computational solution procedure.

Needs coordinates of a ordered set of landmarks.

(R = U diag(1, 1,−1)V T if det(UV T ) = −1)
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Procrustes

PROCRUSTES, also called POLYPEMON or DAMASTES, in
Greek legend, a robber dwelling in the neighbourhood of Eleusis,
who was slain by Thesus (q.v). He had an iron bed (or according
to some accounts, two beds) on which he compelled his victims to
lie, stretching or cutting off their legs to make them fit the bed’s
length. The bed of Procrustes”has become proverbial for
inflexibility. (Encyclopædia Britannica. Vol 18, 1964)
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Condition numbers

Assume that

B = RA, A,B ∈ R3×n, R ∈ Ω

A and B have the singular values σ1 ≤ σ2 ≤ σ3 ≤ 0, where
σ2 > 0.

Let the orthogonal matrix R + ∆R be the solution to the
perturbed problem

min
(R+∆R)∈Ω

‖(R + ∆R)(A + ∆A)− (B + ∆B)‖.
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Condition numbers

A first order bound of ‖∆R‖ is given by

lim
εA→0
εB→0

sup
‖∆A‖≤εA
‖∆B‖≤εB

‖∆R‖
‖∆A‖+ ‖∆B‖

=

√
2

(σ2
2 + σ2

3)
1
2

The square sum of the distances of the landmarks to the
closest straight line equals σ2

2 + σ2
3.
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Conclusions

Computational methods for solving least squares problem are
useful in modelling.

Numerical optimization and linear algebra provide important
basic tools.

The structure of the problem can often be utilized to gain
efficiency and robustness.
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Thanks for your
attention !
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