
mTunnel: a multicast tunneling system with a

user based Quality-of-Service model?

Peter Parnes, K�are Synnes and Dick Schefstr�om

Lule�a University of Technology,

Department of Computer Science/Centre for Distance-spanning Technology,

971 87 Lule�a, Sweden,

fPeter.Parnes,Kare.Synnes,Dick.Schefstromg@cdt.luth.se

Abstract. This paper presents a system, called mTunnel, for applica-

tion level tunneling of multicast tra�c in a lightweight manner, where

the end-user is responsible for deciding which MBone-sessions and multi-

cast groups to tunnel. mTunnel is primarily designed for easy deployment

and easy-to-manage tunneling. Therefore it runs as an user application

and does not need access to restricted system resources.

Information about currently tunneled sessions and control of mTunnel is

provided through a Web-interface. To allow the user to easily start tun-

neling of announced MBone-sessions, mTunnel listens for announcements

and presents this information through the Web-interface.

To save bandwidth, tunneled streams can be translated in four ways:

audio streams can be recoded to an encoding that requires lower band-

width, several audio streams can be mixed together, streams can be

switched based on activity in another stream and streams can be scaled

by dropping a certain percent of the tra�c.

1 Introduction

The Multicast Backbone, MBone [6] has existed for several years and is slowly
being deployed in production networks. When a host sends a packet on the
MBone it does not send it to any speci�c host, but instead to a so calledmulticast

group. The sending host does not need to know which hosts are members of this
group, but that information is stored in and kept up to date by the network.
Packets sent to a group are only sent to the parts of the Internet, where there
are listeners. Local routers detect if there are any local listeners to a speci�c
group using the Internet Group Management Protocol - IGMP [1]. IGMP is also
used by hosts to signal that they want join or leave a multicast group.

To ease the development of the MBone it was �rst developed as a virtual
network on the Internet consisting of tunnels between machines that acted as
virtual routers, sending multicast packets encapsulated in unicast packets. The
software used is called MRouted [4]. Today, multicast routing functionality is

? This work was supported by the Centre for Distance-spanning Technology (CDT),

Lule�a, Sweden



being built into standard Internet routers, but there is still no general support
for multicast over point-to-point links (such as analog modems or ISDN-links).

MRouted uses the normal routing tables and does real multicast routing,
which means that a lot of routing information is also sent over the tunnels. On
low bandwidth links, this can cause a problem because much of the bandwidth
is used for control tra�c and not the data itself.

MRouted also use IGMP to detect members of multicast groups and decide
on which groups to tunnel based on the group membership information. This
means that if a user on the local network joins a group, tra�c to and from that
group will automatically be tunneled as long as the users tool is running. This
automatic tunneling can be a problem on low bandwidth links, as local users
do not see which groups are currently being tunneled and may make the total
bandwidth requirement too high by joining to many groups. If this happens, all
currently tunneled groups get a�ected as packets will be dropped at random.

Another reason for using an unicast tunnel is �rewalls. At some company's
it has proven to be very hard to convince the system administrators to open the
companies �rewall for multicast tra�c.

mTunnel is an application for tunneling of multicast tra�c based on user
requests rather than based on IGMP. This means that users explicitly have to
choose which groups to tunnel. mTunnel, also allows the users to specify how
di�erent groups should be prioritized, which is useful if a group of users are
currently using mTunnel to tunnel an electronic meeting and do not want to be
disturbed by another user that, for instance, want to watch the current NASA
mission in Space2. mTunnel uses the World Wide Web as its main user interface.

The �rst design goal of mTunnel was to easily tunnel multicast tra�c through
non-multicast enabled parts of the Internet or within an intranet. The second
design goal was to let the end users easily make the decision on which groups
to tunnel. The end users should also be able to easily prioritize di�erent parts
of the tra�c. The third design goal was that it should waste as little as possible
of the available bandwidth on control data. The fourth and last design goal was
that it should be as platform independent as possible.

The rest of this paper is divided into: Sect. 2 that presents the general ar-
chitecture of mTunnel and its features, Sect. 3 that presents the user based
Quality-of-Service model used by mTunnel, Sect. 4 that presents the implemen-
tation and current status and Sect. 5 that gives a summary and conclusion about
the work.

2 The mTunnel application

mTunnel consists of four main parts, the tunneler which performs the tunneling
itself, the controller that keeps both ends of the tunnel synchronized and updates
control-clients, the Web-interface which present a user interface to mTunnel
using the World Wide Web, and �nally the translator which can translate streams
in various ways.

2 NASA currently multicasts most of their shuttle missions.



As with all tunnels it has two end-points (see Fig. 1), between which the
tra�c is tunneled. For that reason there must always be two copies of mTunnel
running, one at each side of the tunnel.

Fig. 1. A tunnel connecting a private network to the MBone.

mTunnel runs as a user process to allow for easy deployment of new and
perhaps temporary tunnels.

Sessions

The term session is used as a name for one tunneled stream. A session consists
of: a multicast group, a base port which is the lowest port number to tunnel,
the number of consecutive ports3 including the base port to tunnel, the Time
To Live of the outgoing packets (see Sect. 2.6), and the name of the session.

Statistical information about the number of bytes and packets sent and re-
ceived is also stored within a session.

A session can also include information about prioritization, if di�erent from
the default value (see Sect. 3).

2.1 The tunneler

The tunneler, is the part of mTunnel that does the actual tunneling. It listens on
a number of multicast sockets (based on which groups to tunnel), encapsulates
the incoming data, and sends it through the tunnel (see Fig. 2). The mTunnel
on the other side, receives the encapsulated unicast packet, decapsulates it and
resends it locally using multicast.

The tunneled data is sent over a unicast \connection" between the two end-
points and all data is sent over the same port number. This allows for easy
tunneling through �rewalls (as the systems administrator only has to open one
port in the �rewall).

3 Most multicast streams on the MBone use the Real-time Transfer Protocol [10], that

uses more than one port, one for data and one for control.



Fig. 2. Path of an incoming packet with optional translation.

Encapsulation of data

Each multicast packet is encapsulated by adding the multicast address of the
group from which the packet was received, and the port, to the end of the
packet (see Fig. 3). Because mTunnel runs as a user process, it does not have
access to raw IP packets or the kernel bu�ers used to receive the packet by the
operating system. Therefore, to minimize the number of copy-operations needed,
the tunneler uses a memory bu�er that is larger than needed to receive the
incoming packets. This allows the tunneler to add the encapsulation information
after the data in the same bu�er as the packet was received in. On the other
side of the tunnel, the same packet is recent without any extra copy-operation,
by stripping of the earlier added encapsulation data.

Fig. 3. An encapsulated packet where 'Data' is the original multicast packet.

Transmission loops

mTunnel is designed to connect a network or a single host that currently is
isolated from the MBone, to the MBone. But, if both ends of a tunnel is started
within the MBone, a transmission loop can occur if the tunneled MBone-sessions
and TTL values are not chosen carefully. mTunnel therefore does not forward
packets trough the tunnel if the sender matches the other end of the tunnel.
Unfortunately, if two separate tunnels are deployed that together create a loop,
packets will be forwarded over and over again.



If mTunnel suspects that a loop has occurred (the packet rate through the
tunnel suddenly raises dramatically), it sends out a special probe-packet and
waits for the probe-packet to be received again. If the probe-packet is received
all current tunneling is stoped and users of the system are noti�ed by the Web-
interface. If the probe-packet is not received, the process is repeated a couple
of times, because the probe-packet could have been lost on the way due the to
best-e�ort nature of UDP-packets.

2.2 The controller

The controller, is the part of mTunnel that keeps the two endpoints synchronized.
That is, if a new session is added on one end of the tunnel, the controller sends
a message to the other end telling it to add the same sessions. The controllers
communicate with each other over a TCP-connection for reliable messaging.
If one end of the tunnel is restarted, the other end automatically updates the
�rst end with information about current sessions. The controller also allows for
connections from clients who wants a simpler and faster (than through the Web-
interface) way of communicating with the server.

Using the controller each session can be controlled in various ways:

{ Pause/Continue: The tunneler can be instructed to temporarily pause tun-
neling of a session. If the pause lasts for more than one minute the tunneler
also leaves the multicast group by sending an IGMP leave message for that
session, which makes tra�c to that group stop. This has the advantage of the
tra�c to the end of the tunnel connected to the MBone lowers, but unfortu-
nately this also makes the delay longer when the tunneling of the session is
continued and no one else is listening to the same session (since the tunneler
must rejoin the group and there is always an initial delay before the �rst
packets are received).

{ Priority: The priority for the session can be changed (see Sect. 3).
{ Translation: The tunneler can be instructed to start a translator. A trans-
lator can recode a stream between di�erent encodings; mix several streams
into one stream; switch the tra�c, meaning that only packets from a certain
source is forwarded based on another stream (for instance, video packets are
only tunneled for the member that currently is speaking; and streams can
be scaled, meaning that parts of the tra�c is just dropped (see Sect. 2.4).

2.3 The Web-interface

As one of the design goals was to allow for easy deployment, there is a small
and minimal Web-server built into mTunnel. The alternative was to use a sep-
arate Web-server and the CGI-interface [7], but the built in Web-server allows
for faster access than through a CGI-program (it also allows for a simpler im-
plementation).

The Web-interface lets the user watch information about current sessions and
statistics about the total number of packets and bytes sent through the tunnel.
It also allows the user to control the current sessions and create new sessions.



Creation of a new tunnel session

Tunneling of new sessions can be speci�ed in two ways: 1) manually entered or
2) chosen from a list of earlier announced MBone-sessions:

1. Manually: The user �rst chooses how many sessions to start (normally
one session per available media). Second, the user speci�es a name that
is common for all the new sessions, the TTL with which outgoing packets
should be sent, and for each session the user speci�es the media-type, the
multicast group, the base port and the number of ports to tunnel.

2. Chosen: The user �rst chooses a MBone-session to tunnel from a list over
announced sessions. The information about announced sessions is gathered
using a built in version of the multicast Session Directory, mSD [8], which is
an application for displaying information about currently announced MBone-
sessions. Second, the user chooses which sessions to create (an announced
MBone-session can include several di�erent media which results is several
tunnel sessions).

2.4 The translator

The last part of mTunnel is the translator, that translates the tra�c in various
ways. Currently the translator includes a recoder, that translates between dif-
ferent encodings; a mixer, that mixes several streams into one stream; a switch,
which only forwards packets from a certain source based on another stream
(for instance, video packets are only tunneled for the member that currently is
speaking); and a scaler, that rescales the tra�c by dropping packets in prede�ned
ways.

{ The recoder, parses incoming tra�c and translates it to another format.
Currently, translation from PCM to GSM is supported, which for a normal
MBone audio session would result in a reduction in bandwidth of about 75%
(from 78 to 17 Kbps). LPC support is currently under development and
would result in a reduction of about 88% if translating from PCM.

{ The mixer, mixes several streams into a single stream. This allows for a
bandwidth reduction, if several sources are active at the same time, but has
the drawback of that the �nal receiver can not choose only to play out data
from one sender. Currently mixing of PCM and GSM is supported.

{ The switch, selects which packets to forward through the tunnel based on
the activity in another stream, e.g. it can be instructed to only forward video
packets from the source that currently is also sending audio packets.

{ The scaler, rescales tra�c by dropping certain parts of a tra�c ow. This
is currently only applicable on video tra�c where the scaler drops packets
randomly or drops complete frames depending on the type of tra�c. This
rescaling is possible due to the nature of video encodings on the MBone
today, which are designed to tolerate packet-loss.

The di�erent modes of the translator can of course be stacked after each
other, e.g. an audio session can be both mixed and recoded.



2.5 Security issues

There are three main aspects of security in mTunnel: access to the interface,
access to the tunneled data and �rewalls.

Access to the Web-interface and the controller can either be public or based
on simple user/password authentication. If the access is public, anyone that has
access to the Web-interface can get information about current sessions and start
new sessions, but only the host that created a session can alternate it (that is
pause, continue, stop and/or change the priority).

When tunneling data over public networks, there is sometimes a need to
hinder vicious persons from reading the tunneled data. This is solved using
encryption of the tunneled tra�c.

A third concern regarding security, is how to tunnel data through �rewalls
where it has proven administratively hard to open the �rewall for regular multi-
cast tra�c. Here, mTunnel makes it easier to tunnel tra�c as all tunneled data
always have the same connection, i.e. its source and destination host and port
is always the same. By this, it is easier to convince security administrators to
open the �rewall based on that connection pattern.

2.6 Time To Live

When packets are sent on the MBone today, their reach is limited by a so called
Time To Live (TTL) value. For instance, if a user wants to send multicast
packets to the local network only, he sends them with a TTL of 1.

In the current standard version of the sockets interface4 under Unix and
Windows, there is no way for a user application to get information about the TTL
of an incoming packet. Due to the socket interface, and the fact that mTunnel
runs as a user-application, mTunnel can only forward packets based on the TTL
value speci�ed when the session was created. Unfortunately, this means that if
a user sends tra�c in an announced MBone-session with a lower TTL than the
announced TTL, the local packets will be \ampli�ed" and retransmitted with a
higher TTL than intended by the original sender.

The only available solution to this problem today is to make the users of
mTunnel aware of the problem.

2.7 MBone Session Announcements

mTunnel includes an option for tunneling of MBone session announcements.
These announcements are multicasted using the Session Announcement Proto-
col [5] over a known group-address and port-number. When mTunnel is started,
it can be instructed to automatically tunnel these announcements. This allows
for users on the side that is normally not connected to get information about
current MBone-sessions. This SAP-tunneler, can also be instructed to only tun-
nel information about MBone-sessions that are currently tunneled. It can also

4 The way an application speaks with the operating system and the network.



create new announcements for sessions that are manually entered (that is, they
are not announced in the normal MBone manner).

To allow for faster update, known MBone-sessions are cached locally and are
read from the cache and re-announced when mTunnel is restarted.

3 User based Quality-of-Service and session prioritization

The MRouted application (as presented in Sect. 1) connects networks to the
MBone and makes them \true" members of the MBone, by tunneling all re-
quested tra�c. The decision on which sessions to tunnel, is based on requests
made by the multicast aware applications that the users on the other side of the
tunnel starts.

This model works very good if the bandwidth is not limited, as several ses-
sions can be tunneled at the same time. But, if the bandwidth is limited (like
over analog modems or ISDN-links) the users have to quit their MBone appli-
cations to stop a session from being tunneled (i.e. if an application \wants"
multicast tra�c for a special multicast group, usually the only way is to quit the
application to stop the tra�c). Also, if several users share the same narrow link,
it might complicated or even impossible to coordinate which sessions to tunnel
(several users join di�erent sessions at the same time).

mTunnel instead uses a user based Quality-of-Service model where the local
users explicitly have to choose which sessions to tunnel. This has several advan-
tages, such as: making the end users aware of other currently tunneled sessions
and removing the need for users to quit their MBone tools to stop the tunneling
of speci�c multicast groups.

Another disadvantage with using MRouted for tunneling over dial-up links is
that it uses the same link continuously for exchanging router information, even
if no actual tra�c is currently being tunneled. This means that links that have
automatic set-up and tear-down will be kept dialed up as long as the MRouted
program is running. mTunnel does not exchange this router information, as it
only tunnels multicast tra�c and is not a full router implementation (other
multicast routers will not see the mTunnel as a router, but only as simple end-
host in the network).

3.1 Prioritization

If the total currently needed bandwidth exceeds the available bandwidth, the
tunneler can throw away packets (not send them through the tunnel) based on
user de�ned priorities.

By default, all sessions have the same priority, but using the controller and
the Web-interface, the priorities can be changed. Priorities for one or several
sessions can also temporally be locked, meaning that no other session can get a
higher priority than that/those sessions. This is useful if an important electronic
meeting is conducted over the tunnel and the participants do not want to be
disturbed by another user who wants to watch some other MBone-session.



Priorities, can also be con�gured in mTunnel, based on a number of di�erent
variables in the session: the media-type, the multicast address and port, the used
bandwidth, the name and the description. This allows for advanced selection of
priority schemes, that enables a user to participate in sessions even if the total
needed bandwidth is not available.

4 Implementation and Status

The current prototype is implemented in the platform independent Java language
(version 1.1), except some parts of the audio recoder that is implemented in C
for e�ciency reasons. The audio recode functionality is currently only available
on Sun/Solaris, but the rest has been tested to work under both Unix and
Windows95/NT4.

mTunnel is currently being used in three di�erent ways: to connect di�erent
parts of a large software company's intranet, to connect computers at users
homes, and to connect industry networks to the MBone.

More information about the current version and status of mTunnel can be
found at [9].

4.1 Further issues

Important issues currently not addressed within the mTunnel development in-
cludes the ideas of header compression [2, 3], which together with stream based
ow labels would result in a reduction of the bandwidth requirement. This means
that not the full header would be transmitted through the tunnel, but common
parts between packets in a stream would only transmitted with regular intervals
and removed from the packets inbetween.

The encryption of the security part is currently completely missing and will
be implemented in the future.

Another issue that requires further examination is compression of data sent
over the tunnel. Several tunneled packets could be grouped together and then
be compressed before sent through the tunnel.

The translator should also be extended to include a larger variety of encod-
ings.

5 Summary and Conclusions

This paper presents a system for allowing users to easily connect to the MBone
infrastructure and to connect di�erent isolated multicast capable networks.

mTunnel allows users easy access to information about current tunneled ses-
sions through aWeb-interface, which also allows for easy con�guration of existing
and future sessions.

mTunnel does not start tunneling of MBone-sessions based on current mul-
ticast group activity, but instead makes the user responsible for deciding which



MBone-sessions to tunnel. This allows for a user based Quality-of-Service model

where service decisions are left to the user.
To save bandwidth, data streams can be translated in four di�erent ways:

audio can be recoded to an encoding that requires lower bandwidth, several
simultaneous audio streams can be mixed into a single stream, streams can
be switched based on another stream (for instance, video packets could be for-
warded, based on which audio packets are currently being received), and streams
can be scaled by dropping certain parts of the tra�c.

The system is currently being used to connect di�erent parts of a large soft-
ware company's intranet, to connect computers at users homes to the MBone
and to connect industry networks to the MBone.

The usage of mTunnel has shown and proven that it is useful and that there
is a need for this kind of applications.

Acknowledgments

Thanks to Mattias Mattsson, Fredrik Johansson, H�akan Lennest�al, JohnnyWid�en
and Ulrika Wiss, CDT, for interesting comments, encouragement and feedback.

This work was done within Esprit project 20598 MATES, which is supported
by the Information technology part of the 4:th Framework Program of the Eu-
ropean Union. Support was also provided by the Centre for Distance-spanning
Technology (CDT).

References

1. S. Deering. Internet Group Management Protocol - IGMP. IETF RFC1112.

2. M. Degermark, M. Engan, B. Nordgren, and S. Pink. Low-loss TCP/IP header

compression for wireless networks. In Proceedings from MobiCom, 1996.

3. M. Degermark and S. Pink. Soft state header compression for wireless networks.

In Proceedings from 6th International Workshop on Network and Operating System

Support for Digital Audio and Video (NOSSDAV), 1996.

4. B. Fenner. MRouted. <URL:ftp://ftp.parc.xerox.com/pub/net-research/ipmulti

/>.

5. M. Handley. Session Announcement Protocol - SAP. work in progress.

6. V. Kumar. The MBone information web. <URL:http://www.mbone.com/>.

7. NCSA. Common Gateway Interface - CGI. <URL:http://hoohoo.ncsa.uiuc.edu/

cgi/>.

8. P. Parnes. The multicast Session Directory - mSD. <URL:http://www.cdt.

luth.se/~peppar/progs/mSD/>.

9. P. Parnes. The multicast Tunnel system - mTunnel. <URL:http://www.cdt.

luth.se/~peppar/progs/mTunnel/>.

10. H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A transport pro-

tocol for real-time applications. IETF RFC1889.

This article was processed using the LATEX macro package with LLNCS style


