LULEÅ TEKNISKA UNIVERSITET

Avdelningen för fysik
Tentamen i: Statistisk mekanik och termodynamik 2000-12-14 (MTF072)
Lösningsförslag / Suggested solutions

1. $Z=1+e^{\frac{m B}{\tau}}+e^{-\frac{m B}{\tau}} \approx 1+1+\frac{m B}{\tau}+\frac{1}{2}\left(\frac{m B}{\tau}\right)^{2}+1-\frac{m B}{\tau}+\frac{1}{2}\left(\frac{m B}{\tau}\right)^{2}=3\left(1+\frac{1}{3}\left(\frac{m B}{\tau}\right)^{2}\right)$ $\left.F=-\tau \ln Z=-\tau\left[\ln 3+\ln \left(1+\frac{1}{3}\left(\frac{m B}{\tau}\right)^{2}\right)\right] \approx-\tau\left[\ln 3+\frac{1}{3}\left(\frac{m B}{\tau}\right)^{2}\right)\right] \sigma=-\frac{\partial F}{\partial \tau} V=$ $\left.\ln 3-\frac{1}{3}\left(\frac{m B}{\tau}\right)^{2}\right)$. The decrease in entropy is $\left.\frac{1}{3}\left(\frac{m B}{\tau}\right)^{2}\right)$ and $A=\frac{1}{3}(m B)^{2}$
2. Count the states in a box of size L. After some steps one reaches at (eq 7 page $185 \mathrm{KK}) \tau_{F}=\left(3 \pi^{2} n\right)^{2 / 3} \frac{\hbar^{2}}{2 m}$ this gives $T_{F}=k_{B} \tau_{F}=5.0 \mathrm{~K}$ which much less than $T=0.5 K$ so the approximation of the Fermi-Dirac distribution function as a step function will be fairly good. Calculate U (along lines according to eq 27 page 189 KK) after some steps $C_{v}=\frac{1}{2} \pi^{2} N k_{B} T / T_{F}$ is reached. Evaluating the fermi contribution gives $C_{v}=0.49 N k_{B}=4.10 \mathrm{~J} / \mathrm{mole} / \mathrm{K}$ at $T=0.5 \mathrm{~K}$.
3. a) $\frac{1}{\tau}=\frac{\partial \sigma}{\partial E}=\frac{8 \pi G M}{\hbar c^{3}}$
b) $U=\frac{3}{2} \tau=1 \mathrm{eV}$ will give ratio $\frac{18 e^{13.6 / 3^{2} \tau}}{8 e^{13.6 / 2^{2} \tau}}=\frac{18}{8} e^{20.4(1 / 9-1 / 4) / \tau}=\frac{18}{8} e^{-2.833 / \tau}=0.13$
4. The partition function is $Z_{\text {rot }}=\sum_{j=0}^{\infty}(2 j+1) e^{-j(j+1) \frac{\hbar^{2}}{2 l \tau}} \approx 1+3 e^{-\frac{\hbar^{2}}{I \tau}}=1+3 e^{-x}$ where $x=\frac{\hbar^{2}}{I \tau} \gg 1$. For N identical molecules $Z_{\text {rot }}^{(N)}=\frac{1}{N!} Z_{\text {rot }}^{N}$ And hence $F_{\text {rot }}=$ $-N \tau \ln Z_{\mathrm{rot}}+\tau \ln N!=-N \tau \ln \left(1+3 e^{-x}\right)+\tau \ln N!\approx-3 N \tau e^{-x}+\tau \ln N!\sigma_{\mathrm{rot}}=$ $-\frac{\partial F}{\partial \tau} V=3 N(1+x) e^{-x}+\ln N!$ and $\left(C_{v}\right)_{\mathrm{rot}}=\tau \frac{\partial \sigma}{\partial \tau} V=3 N x^{2} e^{-x}=3 N\left(\frac{\hbar^{2}}{I \tau}\right)^{2} e^{-\frac{\hbar^{2}}{I \tau}}$
5. The total number of atoms is conserved use this to introduce a parameter α controlling the degree of dissociation. $N_{A}=N_{B}=\alpha N_{0}$ and $N_{A B}=(1-\alpha) N_{0}$ where N_{0} is the number of molecules $A B$ if nothing is dissociated. The total number of particles is hence $(1+\alpha) N_{0}$. Initially there are equal number of the A, B and $A B$ and therefore $\alpha=0.5$ The partial pressures are $1 / 3 \mathrm{~atm}$. Ideal gas law $p V=n \tau$ gives constant in law of mass action $K_{p}=\left(\frac{1}{3}\right)^{1} \cdot\left(\frac{1}{3}\right)^{1} \cdot\left(\frac{1}{3}\right)^{-1}=\frac{1}{3}$ atm We also know $p_{0}=1.5 N_{0} \tau / V=1$ atm. Now double V. The new pressure will be $p_{1}=(1+\alpha) N_{0} \tau / 2 V=(1+\alpha) p_{0} / 3$ We also have $K_{p}=\frac{1}{3}=\frac{p_{A} p_{B}}{p_{A B}}=\frac{\left(p_{1} \alpha /(1+\alpha)\right)^{2}}{p_{1}(1-\alpha) /(1+\alpha)}=\frac{\alpha^{2}}{3(1-\alpha)}$ This is an equation for α : $\alpha^{2}+\alpha-1=0$ with solution $\alpha=\frac{\sqrt{5}-1}{2} \approx 0.618$ (only solutions in interval $(0,1)$). This gives $p_{1}=(\sqrt{5}+1) / 6 \approx 0.54 \mathrm{~atm}$. and $p_{A}=p_{B}=(\sqrt{5}-1) / 6 \approx 0.21 \mathrm{~atm}$. $p_{A B}=(3-\sqrt{5}) / 6 \approx 0.13 \mathrm{~atm}$.
