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1. There are several routes to make this calculation, three of them are presented here.

First route The heat capacity is given by C = ∂Utotal

∂τ
, where Utotal = N · U . The energy is

given by U = 〈ǫ〉 = τ 2 ∂ lnZ
∂τ

. The calculation will follow the line from Z we get U and from U
we get C. The energies are given by 0, ǫ, 2ǫ, ..., Sǫ, where the ground state is not degenerated
and the other states all have degeneracy 2. From this information the partition function is
constructed. The partition function is:

Z =
∑

states

e−ǫstate/τ = 1 +
S
∑

n=1

2 · e−nǫ/τ = −1 +
S
∑

n=0

2 · e−nǫ/τ = −1 + 2
1− e−(S+1)ǫ/τ

1− e−ǫ/τ
(1)

In the limit Sǫ/τ >> 1, (τ = kBT ) the last reduces to

Z ≈ −1 + 2
1

1− e−ǫ/τ
=

1 + e−ǫ/τ

1− e−ǫ/τ
(2)

Now we turn to the energy:

U = τ 2
∂ lnZ

∂τ
= ... =

2ǫ

eǫ/τ − e−ǫ/τ
(3)

For the heat capacity we have

C =
∂Utotal

∂τ
=

∂

∂τ

(

2ǫ

eǫ/τ − e−ǫ/τ

)

= 2(
ǫ

τ
)2

eǫ/τ + e−ǫ/τ

(eǫ/τ − e−ǫ/τ )2
(4)

and hence for the total heat capacity

Ctotal = 2N(
ǫ

τ
)2

eǫ/τ + e−ǫ/τ

(eǫ/τ − e−ǫ/τ )2
(5)

In the limit Sǫ/τ >> 1 ie τ → 0

Ctotal → 2N(
ǫ

τ
)2

eǫ/τ

(eǫ/τ )2
= 2N(

ǫ

τ
)2e−ǫ/τ (6)

The contribution to the heat capacity at low temperatures is

C = 2N(
ǫ

τ
)2e−ǫ/τ (7)

The pricipal shape of the heat capacity is seen in Figure 1.



Figure 1: A principal figure showing the heat capacity in the low temperature limit. The choice for
the energy ǫ = 1.0 in eq. 7.

Second route The partition function can also be written as:

Z =
∑

states

e−ǫstate/τ = 1 +
S
∑

n=1

2 · e−nǫ/τ ≈ 1 + 2 · e−ǫ/τ (8)

Now we turn to the energy:

U = τ 2
∂ lnZ

∂τ
= ... =

2ǫ

eǫ/τ + 2
(9)

For the heat capacity we have

C =
∂Utotal

∂τ
=

∂

∂τ

(

2ǫ

eǫ/τ + 2

)

= 2(
ǫ

τ
)2

eǫ/τ

(eǫ/τ + 2)2
≈ 2(

ǫ

τ
)2e−ǫ/τ (10)

Third route This problem can also be solved by a route over F = −τ ln(Z) and then σ =
−(∂F

∂τ
)V,N and at last CV = τ(∂σ

∂τ
)V .

The partition function can also be written as:

Z =
∑

states

e−ǫstate/τ = 1 +
S
∑

n=1

2 · e−nǫ/τ ≈ 1 + 2 · e−ǫ/τ (11)

Now we turn to the Free energy and making use of the approximasion ln(1+x) = x− x2

2
+ x3

3
−...

the free energy is
F = −τ ln(1 + 2 · e−ǫ/τ ) ≈ −2τ · e−ǫ/τ (12)

Now we calculate the entropy:

σ = −(
∂F

∂τ
)V,N = −

∂

∂τ
(−2τ · e−ǫ/τ ) = 2e−ǫ/τ (1 +

ǫ

τ
) (13)



For the heat capacity we have

CV = τ(
∂σ

∂τ
)V = τ

∂

∂τ

(

2e−ǫ/τ (1 +
ǫ

τ
)
)

= 2τe−ǫ/τ (
ǫ

τ 2
(1 +

ǫ

τ
)−

ǫ

τ 2
) = 2(

ǫ

τ
)2e−ǫ/τ (14)

As we can see all three routes, though apparently different, produce the same result for the
heat capacity in the limit of small temperatures.

2. This problem is about comparing Boltzmann factors taking degeneracy into acount.

a) The energy 2, 5h̄ω implies that one of quantum numbers is one while the other two are
zero. The direction of the excitation can be choosen in three different ways, ie the excited
state has a threefold degeneracy. We get the following equation for the probabillitys:
e−1,5h̄ω/kBT = 3e−2,5h̄ω/kBT leading to eh̄ω/kBT = 3 and solving for T gives T = h̄ω

kB ln 3

b) The partition function is given by: Z =
∑

∞

n1=0,n2=0,n3=0 e
−(n1+n2+n3+

3

2
) h̄ω/kBT =

∑

∞

n=0 g(n)e
−(n+ 3

2
) h̄ω/kBT , where g(n) is the degeneracy of the energy levels. g(0) =

1, g(1) = 3, g(2) = 6(= 1+2+3), g(3) = 10(= 1+2+3+4), g(4) = 15(= 1+2+3+4+5)
and so on. Z may be calculated in different ways. One is by noting that it can be cal-
culated as three separate one dimensional oscillators and then multiplying these three
independent results to form the three dimensional result. Another way is to determine
g(n) this is done in the following geometrical way, for each n the values for nx, ny and nx

form a triangle with sides of equal length n+1. Say n = 4 the nx, ny and nx will run from
0 to 4 with the constraint nx + ny + nx = 4 this is a triangle with side length 5 (n + 1).
Now g(n) is simply the number of integer coordinate sites on this triangle. On a triangle
with n there are n + 1 rows and the row with the least sites has just 1 site and the one
with the most has n+ 1 giving an average of sites per row (n+ 2)/2. Hence we arrive at
the desired result g(n) = (n+ 1)(n+ 2)/2 and is just the average value times the number
of terms. The partition sum consists of three geometrical sums. g(n) = n2

2
+ 3n

2
+ 1. The

three sums are given by: 1 + x+ x2 + x3 + x4... = 1
1−x

and x+ 2x2 + 3x3 + 4x4.. = x
(1−x)2

and x+22x2+32x3+42x4.. = x(1+x)
(1−x)3

(you can take the derivative of the first one to arrive

at the desired result) and hence:

Z = e−
3h̄ω
2τ





1

1− e−
h̄ω
τ

+
3

2

e−
h̄ω
τ

(1− e−
h̄ω
τ )2

+
1

2

e−
h̄ω
τ (1 + e−

h̄ω
τ )

(1− e−
h̄ω
τ )3





With τ = h̄ω
ln 3

we arrive at:

Z =
(

1

3

)

3

2

(

1

1− 1
3

+
3

2

1
3

(1− 1
3
)2

+
1

2

1
3
(1 + 1

3
)

(1− 1
3
)3

)

=
(

1

3

)

3

2

· 3.375 = 0.649519052

The Boltzmann factor of the ground state is
(

1
3

)
3

2 and the probabillity for the system to

be in the ground state is 1/3.375 = 0.296296...



3. The proton has 2 possible spin directions - and + with energys −Bmµ and +Bmµ. The
partition function for a proton in the magnetic field B is

Z = eBmµ/τ + e−Bmµ/τ .

The probabillity for a proton to be in the - direction (or state) is given by

P (−Bmµ) =
eBmµ/τ

eBmµ/τ + e−Bmµ/τ
.

and similar for the + direction. As there are N protons the number of protons in the - direction
will be N− = NP (−Bmµ) and in the + direction N+ = NP (+Bmµ). The absorbed power is
proportional to the difference in the number of protons in the + state to the number in the -
state, Power ∝ N+ −N− = N(P (+Bmµ)− P (−Bmµ).

N− −N+ = N
eBmµ/τ − e−Bmµ/τ

eBmµ/τ + e−Bmµ/τ
= N tanh(Bmµ/τ)

In the high temperature limit (Bmµ << τ) we have

N− −N+ = N tanh(Bmµ/τ) ≈ N
Bmµ

τ

4. See also problem 10.5 in Kittel and Kroemer a: F = −Nfǫ0 + Ngτ
(

ln Ng

V nQ
− 1

)

b: Ng =

V nQe
−ǫ0/τ c: Make a figure of ln p as a function of 1/T . The slope of the straight line is − ǫ0

kB
which gives an energy ǫ0 = 0.53eV.

5. The distribution inside the box is: P (v) = 4π( M
2πτ

)3/2v2e−Mv2/2τ in the exiting beam from the
oven the distribution is ∝ vP (v) (sid 395 CK). The most probable velocity is given by the

maximum of ∝ vP (v). d
dv

(v3e−Mv2/2τ = ... = e−Mv2/2τ (3v2 − v4M/τ) = 0. Which gives the

most probable velocity vms =
√

3τ
M
. The time for the drum to rotate half a turn is the same

as the it takes for a Sodium (Na) with the vms to travel through the drum the distance d,
denote this time as t1/2. The equation to solve is t1/2 · vms = d. For the angular velocity ω =
2π

2t1/2
= π

d

√

3τ
M

= π
d

√

3kBT
M

= π
0.10

√

3·1.3807·10−23
·573.1

22.9898·1.661·10−27 = 24769.826 ≈ 2.48 · 104rad/s (=3942.2402

revolutions per second)


