LULEÅ TEKNISKA UNIVERSITET

Avdelningen för materialvetenskap
Exam in: Statistical Physics and Thermodynamics 2012-05-18 (F7035T) Suggested solutions

1. The equation of state for an ideal gas is $p V=N k_{B} T$ and we have to derive the corresponding equation if the particles interact weakly by a van der Waals interaction.
From the partition function Z the pressure may be derived according to $P=k_{B} T\left(\frac{\partial \ln Z}{\partial V}\right)_{T}=$ $\frac{N k_{B} T}{V-b N}-\frac{a N^{2}}{V^{2}}$ which can be rearranged to $\left(P+\frac{a N^{2}}{V^{2}}\right)(V-b N)=N k_{B} T$.
In a similar way the energy can be expressed as a derivative of the logarithm of the partition function with respect to the temperature. The inner energy U is given by $U=k_{B} T^{2}\left(\frac{\partial \ln Z}{\partial T}\right)_{V}=$ $N\left(\frac{3 k_{B} T}{2}-\frac{a N}{V}\right)$
2. From the energy $\epsilon(j)=j(j+1) \epsilon_{0}$ and degeneration $g(j)=2 j+1$ we arrive at the partition function $Z_{R}(\tau)=\sum e^{-\epsilon_{i} / \tau}=\sum_{j=0}^{\infty}(2 j+1) e^{-j(j+1) \epsilon_{0} / \tau}$. The high temperature limit $\tau \gg \epsilon_{0}$ this becomes $Z_{R}(\tau) \approx \int_{0}^{\infty}(2 j+1) e^{-j(j+1) \epsilon_{0} / \tau} \mathrm{d} j$, a change of variables $\left(j(j+1)=x^{2}\right.$ and $\mathrm{d} j(2 j+1)=2 x \mathrm{~d} x),=\int_{0}^{\infty} 2 x e^{-x^{2} \epsilon_{0} / \tau} \mathrm{d} x=\left[-\frac{\tau}{\epsilon_{0}} e^{-x^{2} \epsilon_{0} / \tau}\right]_{0}^{\infty}=\frac{\tau}{\epsilon_{0}}$
The specific heat C_{v}, (high temperature) The Free energy $F=-\tau \ln Z_{R} \approx=-\tau \ln \frac{\tau}{\epsilon_{0}}$, entropy $\sigma=-\frac{\partial F}{\partial \tau} \approx \ln \frac{\tau}{\epsilon_{0}}+1$, and $C_{v}=\tau \frac{\partial \sigma}{\partial \tau} \approx 1$. ie. $C_{v}=1 k_{B}$ per molecule in the high temperature limit.

For low temperatures, $\tau \ll \epsilon_{0}$ we get $Z_{R}(\tau) \approx 1+3 e^{-2 \epsilon_{0} / \tau}$ and $F=-\tau \ln \left(1+3 e^{-2 \epsilon_{0} / \tau}\right)$ and $\sigma=-\frac{\partial F}{\partial \tau}=\ln \left(1+3 e^{-2 \epsilon_{0} / \tau}\right)+\tau \frac{1}{1+3 e^{-2 \epsilon_{0} / \tau}} \cdot \frac{6 \epsilon_{0}}{\tau^{2}} e^{-2 \epsilon_{0} / \tau}$. This leads to $C_{v}=\tau \frac{\partial \sigma}{\partial \tau}=\ldots$. $=$ $\frac{18 \epsilon_{0}^{2} e^{-2 \epsilon_{0} / \tau}}{\tau^{2}\left(1+3 e^{-2 \epsilon_{0} / \tau}\right)}\left[1-\frac{e^{-2 \epsilon_{0} / \tau}}{1+3 e^{-2 \epsilon_{0} / \tau}}\right]$ approximate $\frac{1}{1+x} \approx 1-x$ as x is small this gives $C_{v} \approx \frac{18 \epsilon_{0}^{2} e^{-2 \epsilon_{0} / \tau}}{\tau^{2}}(1-$ $\left.3 e^{-2 \epsilon_{0} / \tau}\right)\left(1-e^{-2 \epsilon_{0} / \tau}\left(1-3 e^{-2 \epsilon_{0} / \tau}\right)\right) \approx \frac{18 \epsilon_{0}^{2} e^{-2 \epsilon_{0} / \tau}}{\tau^{2}}$. Answer $\tau \gg \epsilon_{0}: C_{v}=1$, and $Z_{R}(\tau)=\frac{\tau}{\epsilon_{0}}$ and for $\tau \ll \epsilon_{0}: C_{v}=\frac{18 \epsilon_{0}^{2} e^{-2 \epsilon_{0} / \tau}}{\tau^{2}}$, and $Z_{R}(\tau)=1+3 e^{-2 \epsilon_{0} / \tau}$
3. As only the difference is of interest we can put the energy of the ground state to zero and the excited state to ϵ. The partition sum becomes: $Z=1+2 e^{-\epsilon / \tau}$ and hence the energy will be $U=<\epsilon>=\frac{0+2 \epsilon e^{-\epsilon / \tau}}{1+2 e^{-\epsilon / \tau}}=\frac{2 \epsilon}{2+e^{\epsilon / \tau}}=\frac{2 \epsilon}{2+e^{\epsilon / k_{B} T}}$ an alternative rout is to take the derivative of Z which gives $U=\tau^{2} \frac{\partial \ln Z}{\partial \tau}=\tau^{2} \frac{1}{Z} 2 e^{-\epsilon / \tau} \frac{\epsilon}{\tau^{2}}=\frac{2 \epsilon}{2+e^{\epsilon / \tau}}=\frac{2 \epsilon}{2+e^{\epsilon / k_{B} T}}$. Finally we arrive at C_{v} by a derivative of U with respect to $\tau C_{v}=\frac{\partial U}{\partial \tau}=\frac{2 \epsilon^{2} e^{\epsilon / \tau} / \tau^{2}}{\left(2+e^{\epsilon / \tau}\right)^{2}}$. This can be written as $\frac{2 x^{2} e^{x}}{\left(2+e^{x}\right)^{2}}$ where $x=\epsilon / \tau$. To find the maximum take the derivative with respect to x. $\frac{\left(2 x+x^{2}\right) e^{x}}{\left.3+e^{x}\right)^{2}}-\frac{2 x^{2} e^{2 x}}{\left(3+e^{x}\right)^{3}}=0$ which gives the condition $(x-2)\left(e^{x}-2\right)=8$. This may be solved graphically or by a pocket calculator. The solution is $x \approx 2.655$ ie. $\epsilon=x \tau=x k_{B} T=2.655 \cdot 1.3807 \cdot 10^{-23} \cdot 450=1.650 \cdot 10^{-20} \mathrm{~J}$ $=0.103 \mathrm{eV}$.
4. Here Claypeyrons equation will be used : $\frac{d p}{d T}=\frac{q}{T \Delta v}=-\frac{3.689 \cdot 10^{9}}{T}\left(\Delta v=v_{\text {liquid }}-v_{\text {is }}=\right.$ $\left.\frac{1}{999.8}-\frac{1}{916.8}=-9.0550 \cdot 10^{-5} \mathrm{~m}^{3} / \mathrm{kg}, q=334 \cdot 10^{3} \mathrm{~J} / \mathrm{kg}\right)$. This gives for small changes of temperature: $\Delta T=-\frac{T \Delta p}{3.689 \cdot 10^{9}}=-0.0666 \approx-0.07 \mathrm{~K}$, ie a lowering of the freezing point by 0.07 K .
5. In a 3D Ising model on a cubic lattice each spin has 6 nearest neighbours, and in a Mean Field assumption these 6 nearest neighbours will have the magnitude $<m>$ and the spin we perform our calculation on will take the following values $s_{i}= \pm 1$.. This gives $Z=\sum_{i} e^{-\epsilon_{i} / \tau}=$ $e^{+6 m / \tau}+e^{-6 m / \tau}$ and the magnetisation will be $<m>=\frac{+1 e^{+6 m / \tau}-1 e^{-6 m / \tau}}{e^{+6 m / \tau}+e^{-6 m / \tau}}=\tanh \left(\frac{6 m}{\tau}\right)$. As m s small we may approximate $\tanh x \approx x-x^{3} / 3$. This gives $m=\frac{6 m}{\tau}-\left(\frac{6 m}{\tau}\right)^{3} \frac{1}{3}$ the equation $m^{2}=\frac{3 \tau^{2}}{216}(6-\tau)$ a solution close to $m=0$ as is $\tau \approx \tau_{c}: m^{2}=\frac{3 \tau_{c}^{2}}{216}(6-\tau)$ and $m=\frac{\sqrt{3} \tau_{c}}{\sqrt{216}} \sqrt{(6-\tau)}$ and we arrive at the exponent $\beta=\frac{1}{2}$.

