LULEÅ TEKNISKA UNIVERSITET

Avdelningen för materialvetenskap
Exam in: Statistical Physics and Thermodynamics 2013-08-31 (F7035T)
Suggested solutions

1. a) radius $=5 \mathrm{~cm}$, area $A=4 \pi r^{2}, M_{e}=\sigma T^{4}$ total power $P=A M_{e}=4 \pi r^{2} \sigma T^{4}=$ $4 \pi 0.05^{2} 5.670510^{-8} 10^{24} \mathrm{~W}=1.78110^{15} \mathrm{~W} \approx 210^{15} \mathrm{~W}$. b) flux at distance $\mathrm{a}=2 \mathrm{~km}$, area of sphere $A_{2}=4 \pi a^{2} F=P / A_{2}=1.78110^{15} / 4 \pi 2^{2} 10^{6}=3.54410^{7} \approx 3.510^{7} \mathrm{~W} / \mathrm{m}^{2}$. c) Wiens displacement law gives $\lambda_{m}=2.897810^{-3} / 10^{6} \mathrm{~m} \approx 3 \mathrm{~nm}$
2. The equation of state for an ideal gas is $p V=N k_{B} T$ and we have to derive the corresponding equation if the particles interact weakly by a van der Waals interaction.
From the partition function Z the pressure may be derived according to $P=k_{B} T\left(\frac{\partial \ln Z}{\partial V}\right)_{T}=$ $\frac{N k_{B} T}{V-b N}-\frac{a N^{2}}{V^{2}}$ which can be rearranged to $\left(P+\frac{a N^{2}}{V^{2}}\right)(V-b N)=N k_{B} T$.
In a similar way the energy can be expressed as a derivative of the logarithm of the partition function with respect to the temperature. The inner energy U is given by $U=k_{B} T^{2}\left(\frac{\partial \ln Z}{\partial T}\right)_{V}=$ $N\left(\frac{3 k_{B} T}{2}-\frac{a N}{V}\right)$
3. 2 particles A and $\mathrm{B}, 3$ states with energy $0, \epsilon$ and $3 \epsilon \mathbf{a})$ Classical

state	0	ϵ	3ϵ	energy
1	AB	-	-	0
2	-	AB	-	2ϵ
3	-	-	AB	6ϵ
4	A	B	-	ϵ
5	B	A	-	ϵ
6	A	-	B	3ϵ
7	B	-	A	3ϵ
8	-	A	B	4ϵ
9	-	B	A	4ϵ

b) Bosons

state	0	ϵ	3ϵ	energy
1	AA	-	-	0
2	-	AA	-	2ϵ
3	-	-	AA	6ϵ
4	A	A	-	ϵ
6	A	-	A	3ϵ
8	-	A	A	4ϵ

and $Z=1+e^{-\epsilon / \tau}+e^{-2 \epsilon / \tau}+e^{-3 \epsilon / \tau}+e^{-4 \epsilon / \tau}+e^{-6 \epsilon / \tau}$
c) Fermions

state	0	ϵ	3ϵ	energy
4	A	A	-	ϵ
6	A	-	A	3ϵ
8	-	A	A	4ϵ

4. There are n empty lattice sites these can be choosen in $\binom{N}{n}=\frac{N!}{n!(N-n)!}$ ways. There are n interstitial sites occupied, these can be choosen in $\binom{N}{n}=\frac{N!}{n!(N-n)!}$ ways. Hence there are in total $W(n)=\binom{N}{n}^{2}$ ways to form as configuration with n atoms at interstitial sites, all with energy $E=n \epsilon$. The entropy $\sigma=\ln (W(n))=\ln \left(\frac{N!}{n!(N-n)!}\right)^{2}=2 \ln \left(\frac{N!}{n!(N-n)!}\right) \approx 2[N \ln N-n \ln n-(N-$ $n) \ln (N-n)]$ Use def of temperature: $\frac{1}{\tau}=\frac{\partial \sigma}{\partial E}=\frac{\partial \sigma}{\partial n} \frac{d n}{d E}=\frac{1}{\epsilon} 2\left[-\ln n+\ln (N-n)=\frac{2}{\epsilon} \ln \frac{N-n}{n}\right.$. This gives $\frac{n}{N}=\frac{1}{e^{\epsilon / 2 \tau}+1} \approx e^{-\epsilon / 2 \tau}$ (if $\epsilon \gg \tau$).
5. In a 3D Ising model on a cubic lattice each spin has 6 nearest neighbours, and in a Mean Field assumption these 6 nearest neighbours will have the magnitude $<m>$ and the spin we perform our calculation on will take the following values $s_{i}= \pm 1 .$. This gives $Z=\sum_{i} e^{-\epsilon_{i} / \tau}=$ $e^{+6 m / \tau}+e^{-6 m / \tau}$ and the magnetisation will be $<m>=\frac{+1 e^{+6 m / \tau}-1 e^{-6 m / \tau}}{e^{+6 m / \tau}+e^{-6 m / \tau}}=\tanh \left(\frac{6 m}{\tau}\right)$. As m s small we may approximate $\tanh x \approx x-x^{3} / 3$. This gives $m=\frac{6 m}{\tau}-\left(\frac{6 m}{\tau}\right)^{3} \frac{1}{3}$ the equation $m^{2}=\frac{3 \tau^{2}}{216}(6-\tau)$ a solution close to $m=0$ as is $\tau \approx \tau_{c}: m^{2}=\frac{3 \tau_{c}^{2}}{216}(6-\tau)$ and $m=\frac{\sqrt{3} \tau_{c}}{\sqrt{216}} \sqrt{(6-\tau)}$ and we arrive at the exponent $\beta=\frac{1}{2}$.
