LULEÅ TEKNISKA UNIVERSITET

Avdelningen för materialvetenskap
Exam in: Statistical Physics and Thermodynamics 2015-03-27 (F7035T)
Suggested solutions

1. Separation of phases is treated in the course book chapter 11. A couple of important topics of a good solution are: The treatment of 'entropy of mixing' $\sigma_{M}=-N[(1-x) \ln (1-x)+x \ln (x)]$. The free energy $f=u-\tau \sigma$ (per atom). The construction of a graph of $\frac{\sigma_{M}}{N}$ vs x. Figure I of the problem gives a free energy that gives rise to a separation of phases below a certain temperature into two phases of different mixing x. Figure II does not support any phase separation of the mixture.
2. Here Clausius-Claypeyrons equation will be used : $\frac{d p}{d T}=\frac{q}{T \Delta v}$ as we follow the phase boundary. $\frac{d p}{d T}=\frac{\Delta p}{\Delta T}=-\frac{3.689 \cdot 10^{9}}{T}\left(\Delta v=v_{\text {liquid }}-v_{\text {is }}=\frac{1}{999.8}-\frac{1}{916.8}=-9.0550 \cdot 10^{-5} \mathrm{~m}^{3} / \mathrm{kg}, q=334 \cdot 10^{3}\right.$ $\mathrm{J} / \mathrm{kg})$. This gives for small changes of temperature: $\Delta T=-\frac{T \Delta p}{3.689 \cdot 10^{9}}=-0.0666 \approx-0.07 \mathrm{~K}$, ie a lowering of the freezing point by 0.07 K .
3. As only the difference is of interest we can put the energy of the ground state to zero and the excited state to ϵ. The partition sum becomes: $Z=1+2 e^{-\epsilon / \tau}$ and hence the energy will be $U=<\epsilon>=\frac{0+2 \epsilon e^{-\epsilon / \tau}}{1+2 e^{-\epsilon / \tau}}=\frac{2 \epsilon}{2+e^{\epsilon / \tau}}=\frac{2 \epsilon}{2+e^{\epsilon / k_{B} T}}$ an alternative rout is to take the derivative of Z which gives $U=\tau^{2} \frac{\partial \ln Z}{\partial \tau}=\tau^{2} \frac{1}{Z} 2 e^{-\epsilon / \tau} \frac{\epsilon}{\tau^{2}}=\frac{2 \epsilon}{2+e^{\epsilon / \tau}}=\frac{2 \epsilon}{2+e^{\epsilon / k_{B} T}}$. Finally we arrive at C_{v} by a derivative of U with respect to $\tau C_{v}=\frac{\partial U}{\partial \tau}=\frac{2 \epsilon^{2} \epsilon^{\epsilon / \tau} / \tau^{2}}{\left(2+e^{\epsilon / \tau}\right)^{2}}$. This can be written as $\frac{2 x^{2} e^{x}}{\left(2+e^{x}\right)^{2}}$ where $x=\epsilon / \tau$. To find the maximum take the derivative with respect to x. $\frac{\left(2 x+x^{2}\right) e^{x}}{\left.3+e^{x}\right)^{2}}-\frac{2 x^{2} e^{2 x}}{\left(3+e^{x}\right)^{3}}=0$ which gives the condition $(x-2)\left(e^{x}-2\right)=8$. This may be solved graphically or by a pocket calculator. The solution is $x \approx 2.655$ ie. $\epsilon=x \tau=x k_{B} T=2.655 \cdot 1.3807 \cdot 10^{-23} \cdot 330=1.210 \cdot 10^{-20} \mathrm{~J}$ $=0.0756 \mathrm{eV}=75.6 \mathrm{meV}$.
4. a) The partition sum is given by: $Z=\sum_{n_{1}=0, n_{2}=0}^{\infty} e^{-\left(n_{1}+n_{2}+1.0\right) \hbar \omega / k_{B} T}=$ $\sum_{n=0}^{\infty} g(n) e^{-(n+1.0) \hbar \omega / k_{B} T}$, where $g(n)$ is the degeneracy of the energy levels and $n=n_{1}+n_{2}$. There are two ways to evaluate this sum. One simple and one more elaborate. Only the simple solution is presented here. The sum for Z can be done as a product of two separate independent geometric sums.
$Z=\sum_{n_{1}=0, n_{2}=0}^{\infty} e^{-\left(n_{1}+n_{2}+1.0\right) \hbar \omega / k_{B} T}=\sum_{n_{1}=0}^{\infty} e^{-\left(n_{1}+0.5\right) \hbar \omega / k_{B} T} \cdot \sum_{n_{2}=0}^{\infty} e^{-\left(n_{2}+0.5\right) \hbar \omega / k_{B} T}=$ $\left(\sum_{n=0}^{\infty} e^{-(n+0.5) \hbar \omega / k_{B} T}\right)^{2}=e^{-\hbar \omega / k_{B} T}\left(\sum_{n=0}^{\infty} e^{-n \hbar \omega / k_{B} T}\right)^{2}=e^{-\hbar \omega / k_{B} T}\left(\frac{1}{1-e^{-\hbar \omega / k_{B} T}}\right)^{2}=$ and we arrive at the following for the partition function Z :

$$
Z=\left(\frac{1}{e^{+\hbar \omega / 2 k_{B} T}-e^{-\hbar \omega / 2 k_{B} T}}\right)^{2}=\text { or }=e^{-\hbar \omega / k_{B} T}\left(\frac{1}{1-e^{-\hbar \omega / k_{B} T}}\right)^{2}
$$

b) There is one state of the lower energy and two states with the next higher energy. The probability to find the oscillator in a state of energy is proportional to the Boltzmann factor, we arrive at the following equation. $1 e^{-1,0 \hbar \omega / k_{B} T}=2 e^{-2,0 \hbar \omega / k_{B} T}$ and $e^{1 \hbar \omega / k_{B} T}=2$ which evaluates to $T=\frac{1 \hbar \omega}{k_{B} \ln 2}$ or if you prefer $\tau, \tau=\frac{1 \hbar \omega}{\ln 2}$, which is equally correct.
c) The partition sum at this specific temperature is given by: $\left(k_{B} T=\tau=\frac{1 \hbar \omega}{\ln 2}\right)$ we arrive at the following

$$
Z=\left(\frac{1}{e^{+\frac{\ln 2}{2}}-e^{-\frac{\ln 2}{2}}}\right)^{2}=\left(\frac{1}{\sqrt{2}-\frac{1}{\sqrt{2}}}\right)^{2}
$$

We continue with the calculation of the probability: (we may choose any of the two energies as their probabilities will be equal at the temperature in question: $\left(1 e^{-1,0 \hbar \omega / k_{B} T}=\right.$ $\left.2 e^{-2,0 \hbar \omega / k_{B} T}\right)$

$$
\begin{gathered}
P=e^{-\hbar \omega / k_{B} T} /\left(\frac{1}{\sqrt{2}-\frac{1}{\sqrt{2}}}\right)^{2}=2^{-1}\left(\sqrt{2}-\frac{1}{\sqrt{2}}\right)^{2}=\left(\frac{1}{\sqrt{2}}\right)^{2}\left(\sqrt{2}-\frac{1}{\sqrt{2}}\right)^{2}= \\
\left(1-\frac{1}{2}\right)^{2}=\frac{1}{4}=0.25
\end{gathered}
$$

The probability to be in a state of one of these energys is $P=\frac{1}{4}=0.25$
5. There are five different states of hemoglobin depending on the number of bound oxygen molecules $0,1,2,3$, or 4 . For each of these the number of different ways to attach the oxygen molecules are $1,4,6,4$ and 1 . The chemical activity of O_{2} is $\lambda=e^{\mu / \tau}$, where ϵ is the energy of bound O_{2}. The Grand partition sum is $Z=1+4 \lambda e^{-\epsilon / \tau}+6 \lambda^{2} e^{-2 \epsilon / \tau}+4 \lambda^{3} e^{-3 \epsilon / \tau}+\lambda^{4} e^{-4 \epsilon / \tau}$. The probability for one O_{2} molecule is $P(1)=\frac{4 \lambda e^{-\epsilon / \tau}}{Z}$ and to have four O_{2} molecules is $P(4)=\frac{\lambda^{4} e^{-4 \epsilon / \tau}}{Z}$.
A graph of $P(1)$ vs λ will start at zero and pass a maximum value and approach zero again as λ increases.
A graph of $P(4)$ vs λ will start at zero and start to increase after the maxima of $P(1), P(2)$ and $P(3)$ have passed to the saturation value 1 as λ increases.

