LULEÅ TEKNISKA UNIVERSITET

Avdelningen för materialvetenskap
Exam in: Statistical Physics and Thermodynamics 2015-08-29 (F7035T)
Suggested solutions

1. 2. Correct: A. At low densities, the pressure would be less than that predicted by the ideal gas law.
1. Correct: B. The gas in 100 liters
2. To calculate this, consider a reversible isothermal expansion. Since the internal energy of an ideal gas only depends on its temperaturer T, it doesn't change in the expansion. Thus $d Q=d W=p d V$ and where the equation of state gives $p=n R T / V$, hence

$$
\begin{equation*}
\Delta S=\int \frac{d Q}{T}=\int \frac{n R T}{V T} d V=n R \ln \left(\frac{V_{f}}{V_{i}}=R \ln (10)=8,3145 \cdot 2.3026=19.145 \approx 19.1 \mathrm{~J} / \mathrm{K}\right. \tag{1}
\end{equation*}
$$

2. See solution to problem 3 chapter 7 .
3. Entropin före i delsystem 1 och 2 ges av $\sigma_{1,2}=N\left[\ln \left(\frac{n_{Q_{1,2}}}{n}\right)+\frac{5}{2}\right]$ och entropin efter ges av (vid blandningens temperatur τ_{e}) $\sigma_{e}=2 N\left[\ln \left(\frac{n_{Q_{e}}}{n}\right)+\frac{5}{2}\right]$. Bestäm blandningens τ_{e}, inre energi ändras ej (inget utbyte med omgivning), $\frac{3}{2} \cdot 2 N \cdot \tau_{e}=\frac{3}{2} \cdot N \cdot\left(\tau_{1}+\tau_{2}\right)$ ger att $\tau_{e}=\frac{\tau_{1}+\tau_{2}}{2}$. Då blir entropi ändringen (ökning) $\Delta \sigma=\sigma_{e}-\sigma_{1}-\sigma_{2}=N \ln \left(\frac{n_{Q_{e}}^{2} n^{2}}{n^{2} n_{Q_{1}} n_{Q_{2}}}\right)=N \frac{3}{2} \ln \left(\frac{\tau_{e}^{2}}{\tau_{1} \tau_{2}}\right)=$ $N \frac{3}{2} \ln \left(\frac{\left(\tau_{1}+\tau_{2}\right)^{2}}{4 \tau_{1} \tau_{2}}\right)$.
4. From the energy $\epsilon(j)=j(j+1) \epsilon_{0}$ and degeneration $g(j)=2 j+1$ we arrive at the partition function $Z_{R}(\tau)=\sum e^{-\epsilon_{i} / \tau}=\sum_{j=0}^{\infty}(2 j+1) e^{-j(j+1) \epsilon_{0} / \tau}$. The high temperature limit $\tau \gg \epsilon_{0}$ this becomes $Z_{R}(\tau) \approx \int_{0}^{\infty}(2 j+1) e^{-j(j+1) \epsilon_{0} / \tau} \mathrm{d} j$, a change of variables $\left(j(j+1)=x^{2}\right.$ and $\mathrm{d} j(2 j+1)=2 x \mathrm{~d} x),=\int_{0}^{\infty} 2 x e^{-x^{2} \epsilon_{0} / \tau} \mathrm{d} x=\left[-\frac{\tau}{\epsilon_{0}} e^{-x^{2} \epsilon_{0} / \tau}\right]_{0}^{\infty}=\frac{\tau}{\epsilon_{0}}$
The specific heat C_{v}, (high temperature) The Free energy $F=-\tau \ln Z_{R} \approx=-\tau \ln \frac{\tau}{\epsilon_{0}}$, entropy $\sigma=-\frac{\partial F}{\partial \tau} \approx \ln \frac{\tau}{\epsilon_{0}}+1$, and $C_{v}=\tau \frac{\partial \sigma}{\partial \tau} \approx 1$. ie. $C_{v}=1 k_{B}$ per molecule in the high temperature limit.

For low temperatures, $\tau \ll \epsilon_{0}$ we get $Z_{R}(\tau) \approx 1+3 e^{-2 \epsilon_{0} / \tau}$ and $F=-\tau \ln \left(1+3 e^{-2 \epsilon_{0} / \tau}\right)$ and $\sigma=-\frac{\partial F}{\partial \tau}=\ln \left(1+3 e^{-2 \epsilon_{0} / \tau}\right)+\tau \frac{1}{1+3 e^{-2 \epsilon_{0} / \tau}} \cdot \frac{6 \epsilon_{0}}{\tau^{2}} e^{-2 \epsilon_{0} / \tau}$. This leads to $C_{v}=\tau \frac{\partial \sigma}{\partial \tau}=\ldots .=$ $\frac{18 \epsilon_{0}^{2} e^{-2 \epsilon_{0} / \tau}}{\tau^{2}\left(1+3 e^{-2 \epsilon_{0} / \tau}\right)}\left[1-\frac{e^{-2 \epsilon_{0} / \tau}}{1+3 e^{-2 \epsilon_{0} / \tau}}\right]$ approximate $\frac{1}{1+x} \approx 1-x$ as x is small this gives $C_{v} \approx \frac{18 \epsilon_{0}^{2} e^{-2 \epsilon \epsilon_{0} / \tau}}{\tau^{2}}(1-$
$\left.3 e^{-2 \epsilon_{0} / \tau}\right)\left(1-e^{-2 \epsilon_{0} / \tau}\left(1-3 e^{-2 \epsilon_{0} / \tau}\right)\right) \approx \frac{18 \epsilon_{0}^{2} e^{-2 \epsilon_{0} / \tau}}{\tau^{2}}$. Answer $\tau \gg \epsilon_{0}: C_{v}=1$, and $Z_{R}(\tau)=\frac{\tau}{\epsilon_{0}}$ and for $\tau \ll \epsilon_{0}: C_{v}=\frac{18 \epsilon_{0}^{2} e^{-2 \epsilon_{0} / \tau}}{\tau^{2}}$, and $Z_{R}(\tau)=1+3 e^{-2 \epsilon_{0} / \tau}$
5. The general relation for the specific heat is $C_{v}=\tau\left(\frac{\partial \sigma}{\partial \tau}\right)_{v}$
a: in case of the conduction electrons we have $C_{v}=\gamma \tau$ these two relations combine to give $\gamma \tau=\tau\left(\frac{\partial \sigma}{\partial \tau}\right)_{v}$ leading to $\frac{\partial \sigma}{\partial \tau}=\gamma=$ constant. and hence integrating to $\sigma \propto \tau+$ 'new constant' where the 'new constant' is zero as the the entropy is zero at temperature absolute zero. If the temperature increases from $\tau=300 \mathrm{~K}$ to 800 K the entropy σ will increase by a factor of $\frac{8}{3} \approx 2.67$.
b: In the case of the electro magnetic field we have that the energy density is $u \propto \tau^{4}$ (StefanBoltzmann T^{4} law) and hence we have for the specific heat $C_{v} \propto \tau^{3}$ (Note the similarity to phonons at low temperature the Debye T^{3} law). As in a) we arrive at $\frac{\partial \sigma}{\partial \tau} \propto \tau^{2}$ and hence $\sigma \propto \tau^{3}$. If the temperature is raised from 500 K to 1200 K the entropy σ will increase by a factor of $\left(\frac{1200}{500}\right)^{3}=13.824$ that is a factor of $\mathbf{1 3 . 8}$.

