## LULEÅ TEKNISKA UNIVERSITET

Avdelningen för materialvetenskap
Exam in: Statistical Physics and Thermodynamics 2017-05-13 (F7035T)
Suggested solutions

1. For a molecule the heat capacity $C_{v}$ is given by $C_{v}=\left(\frac{\partial U}{\partial T}\right)_{V}$. The partition function is $Z=$ $1+3 e^{-\epsilon / \tau}$. The energy is $U=\frac{3 \epsilon e^{-\epsilon / \tau}}{Z}$

$$
\begin{equation*}
C_{v}=\left(\frac{\partial U}{\partial \tau}\right)_{V}=\frac{3\left(\frac{\epsilon}{\tau}\right)^{2} e^{\epsilon / \tau}}{\left(3+e^{\epsilon / \tau}\right)^{2}} \tag{1}
\end{equation*}
$$

Now let $x=\epsilon / \tau$

$$
\begin{equation*}
C_{v}=\frac{3 x^{2} e^{x}}{\left(3+e^{x}\right)^{2}} \tag{2}
\end{equation*}
$$

Taking the derivative $\frac{\partial C_{v}}{\partial x}$ we arrive at an equation for the maximum of $C_{v}$ as $3(2+x)+(2-$ $x) e^{x}=0$. The maximum is at about $x \approx 2.845$, which gives $C_{v}=1.023$ and using the correct units $C_{v}=1.023 k_{B}$.
2. There are several routes to make this calculation, three of them are presented here.

## First route

The heat capacity is given by $C=\frac{\partial U_{\text {total }}}{\partial \tau}$, where $U_{\text {total }}=N \cdot U$. The energy is given by $U=\langle\epsilon\rangle=\tau^{2} \frac{\partial \ln Z}{\partial \tau}$. The calculation will follow the line from $Z$ we get $U$ and from $U$ we get $C$. The energies are given by $0, \epsilon, 2 \epsilon, \ldots, S \epsilon$, where the ground state is not degenerated and the other states all have degeneracy 2 . From this information the partition function is constructed. The partition function is:

$$
\begin{equation*}
Z=\sum_{\text {states }} e^{-\epsilon_{\text {state }} / \tau}=1+\sum_{n=1}^{S} 2 \cdot e^{-n \epsilon / \tau}=-1+\sum_{n=0}^{S} 2 \cdot e^{-n \epsilon / \tau}=-1+2 \frac{1-e^{-(S+1) \epsilon / \tau}}{1-e^{-\epsilon / \tau}} \tag{3}
\end{equation*}
$$

In the limit $S \epsilon / \tau \gg 1,\left(\tau=k_{B} T\right)$ the last reduces to

$$
\begin{equation*}
Z \approx-1+2 \frac{1}{1-e^{-\epsilon / \tau}}=\frac{1+e^{-\epsilon / \tau}}{1-e^{-\epsilon / \tau}} \tag{4}
\end{equation*}
$$

Now we turn to the energy:

$$
\begin{equation*}
U=\tau^{2} \frac{\partial \ln Z}{\partial \tau}=\ldots=\frac{2 \epsilon}{e^{\epsilon / \tau}-e^{-\epsilon / \tau}} \tag{5}
\end{equation*}
$$

For the heat capacity we have

$$
\begin{equation*}
C=\frac{\partial U_{\text {total }}}{\partial \tau}=\frac{\partial}{\partial \tau}\left(\frac{2 \epsilon}{e^{\epsilon / \tau}-e^{-\epsilon / \tau}}\right)=2\left(\frac{\epsilon}{\tau}\right)^{2} \frac{e^{\epsilon / \tau}+e^{-\epsilon / \tau}}{\left(e^{\epsilon / \tau}-e^{-\epsilon / \tau}\right)^{2}} \tag{6}
\end{equation*}
$$



Figure 1: A principal figure showing the heat capacity in the low temperature limit. The choice for the energy $\epsilon=1.0$ in eq. 9 .
and hence for the total heat capacity

$$
\begin{equation*}
C_{\text {total }}=2 N\left(\frac{\epsilon}{\tau}\right)^{2} \frac{e^{\epsilon / \tau}+e^{-\epsilon / \tau}}{\left(e^{\epsilon / \tau}-e^{-\epsilon / \tau}\right)^{2}} \tag{7}
\end{equation*}
$$

In the limit $S \epsilon / \tau \gg 1$ ie $\tau \rightarrow 0$

$$
\begin{equation*}
C_{\text {total }} \rightarrow 2 N\left(\frac{\epsilon}{\tau}\right)^{2} \frac{e^{\epsilon / \tau}}{\left(e^{\epsilon / \tau}\right)^{2}}=2 N\left(\frac{\epsilon}{\tau}\right)^{2} e^{-\epsilon / \tau} \tag{8}
\end{equation*}
$$

The contribution to the heat capacity at low temperatures is

$$
\begin{equation*}
C=2 N\left(\frac{\epsilon}{\tau}\right)^{2} e^{-\epsilon / \tau} \tag{9}
\end{equation*}
$$

The pricipal shape of the heat capacity is seen in Figure 1.

## Second route

The partition function can also be written as:

$$
\begin{equation*}
Z=\sum_{\text {states }} e^{-\epsilon_{\text {state }} / \tau}=1+\sum_{n=1}^{S} 2 \cdot e^{-n \epsilon / \tau} \approx 1+2 \cdot e^{-\epsilon / \tau} \tag{10}
\end{equation*}
$$

Now we turn to the energy:

$$
\begin{equation*}
U=\tau^{2} \frac{\partial \ln Z}{\partial \tau}=\ldots=\frac{2 \epsilon}{e^{\epsilon / \tau}+2} \tag{11}
\end{equation*}
$$

For the heat capacity we have

$$
\begin{equation*}
C=\frac{\partial U_{\text {total }}}{\partial \tau}=\frac{\partial}{\partial \tau}\left(\frac{2 \epsilon}{e^{\epsilon / \tau}+2}\right)=2\left(\frac{\epsilon}{\tau}\right)^{2} \frac{e^{\epsilon / \tau}}{\left(e^{\epsilon / \tau}+2\right)^{2}} \approx 2\left(\frac{\epsilon}{\tau}\right)^{2} e^{-\epsilon / \tau} \tag{12}
\end{equation*}
$$

## Third route

This problem can also be solved by a route over $F=-\tau \ln (Z)$ and then $\sigma=-\left(\frac{\partial F}{\partial \tau}\right)_{V, N}$ and at last $C_{V}=\tau\left(\frac{\partial \sigma}{\partial \tau}\right)_{V}$.
The partition function can also be written as:

$$
\begin{equation*}
Z=\sum_{\text {states }} e^{-\epsilon_{\text {state }} / \tau}=1+\sum_{n=1}^{S} 2 \cdot e^{-n \epsilon / \tau} \approx 1+2 \cdot e^{-\epsilon / \tau} \tag{13}
\end{equation*}
$$

Now we turn to the Free energy and making use of the approximasion $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots$ the free energy is

$$
\begin{equation*}
F=-\tau \ln \left(1+2 \cdot e^{-\epsilon / \tau}\right) \approx-2 \tau \cdot e^{-\epsilon / \tau} \tag{14}
\end{equation*}
$$

Now we calculate the entropy:

$$
\begin{equation*}
\sigma=-\left(\frac{\partial F}{\partial \tau}\right)_{V, N}=-\frac{\partial}{\partial \tau}\left(-2 \tau \cdot e^{-\epsilon / \tau}\right)=2 e^{-\epsilon / \tau}\left(1+\frac{\epsilon}{\tau}\right) \tag{15}
\end{equation*}
$$

For the heat capacity we have

$$
\begin{equation*}
C_{V}=\tau\left(\frac{\partial \sigma}{\partial \tau}\right)_{V}=\tau \frac{\partial}{\partial \tau}\left(2 e^{-\epsilon / \tau}\left(1+\frac{\epsilon}{\tau}\right)\right)=2 \tau e^{-\epsilon / \tau}\left(\frac{\epsilon}{\tau^{2}}\left(1+\frac{\epsilon}{\tau}\right)-\frac{\epsilon}{\tau^{2}}\right)=2\left(\frac{\epsilon}{\tau}\right)^{2} e^{-\epsilon / \tau} \tag{16}
\end{equation*}
$$

As we can see all three routes, though apparently different, produce the same result for the heat capacity in the limit of small temperatures.
3. Here Clausius-Claypeyrons equation will be used : $\frac{d p}{d T}=\frac{q}{T \Delta v}$ as we follow the phase boundary. $\frac{d p}{d T}=\frac{\Delta p}{\Delta T}=-\frac{3.689 \cdot 10^{9}}{T} . \quad\left(\Delta v=v_{\text {liquid }}-v_{\text {is }}=\frac{1}{999.8}-\frac{1}{916.8}=-9.0550 \cdot 10^{-5} \mathrm{~m}^{3} / \mathrm{kg}, q=334 \cdot 10^{3}\right.$ $\mathrm{J} / \mathrm{kg})$. This gives for small changes of temperature: $\Delta T=-\frac{T \Delta p}{3.689 \cdot 10^{9}}=-0.143 \approx-0.14 \mathrm{~K}$, ie a lowering of the freezing point by 0.14 K .
4. The distribution inside the box is: $P(v)=4 \pi\left(\frac{M}{2 \pi \tau}\right)^{3 / 2} v^{2} e^{-M v^{2} / 2 \tau}$ in the exiting beam from the oven the distribution is $\propto v P(v)(\operatorname{sid} 395 \mathrm{CK})$. The most probable velocity is given by the maximum of $\propto v P(v) . \frac{\mathrm{d}}{\mathrm{d} v}\left(v^{3} e^{-M v^{2} / 2 \tau}=\ldots=e^{-M v^{2} / 2 \tau}\left(3 v^{2}-v^{4} M / \tau\right)=0\right.$. Which gives the most probable velocity $v_{m s}=\sqrt{\frac{3 \tau}{M}}$. The time for the drum to rotate half a turn is the same as the it takes for a Sodium ( Na ) with the $v_{m s}$ to travel through the drum the distance $d$, denote this time as $t_{1 / 2}$. The equation to solve is $t_{1 / 2} \cdot v_{m s}=d$. For the angular velocity $\omega=\frac{2 \pi}{2 t_{1 / 2}}=\frac{\pi}{d} \sqrt{\frac{3 \tau}{M}}=\frac{\pi}{d} \sqrt{\frac{3 k_{B} T}{M}}=\frac{\pi}{0.10} \sqrt{\frac{3 \cdot 1.3807 \cdot 10^{-23.573 .15}}{22.9898 \cdot 1.661 \cdot 10^{-27}}}=24769.787 \approx 2.48 \cdot 10^{4} \mathrm{rad} / \mathrm{s} \quad(=3942,23$ revolutions per second)
5. The partition function is $Z=1+e^{\frac{m B}{\tau}}+e^{-\frac{m B}{\tau}} \approx 1+1+\frac{m B}{\tau}+\frac{1}{2}\left(\frac{m B}{\tau}\right)^{2}+1-\frac{m B}{\tau}+$ $\frac{1}{2}\left(\frac{m B}{\tau}\right)^{2}=3\left(1+\frac{1}{3}\left(\frac{m B}{\tau}\right)^{2}\right) . \quad$ The free energy $F=-\tau \ln Z=-\tau\left[\ln 3+\ln \left(1+\frac{1}{3}\left(\frac{m B}{\tau}\right)^{2}\right)\right] \approx$ $\left.-\tau\left[\ln 3+\frac{1}{3}\left(\frac{m B}{\tau}\right)^{2}\right)\right]$. The entropy $\left.\sigma=-\frac{\partial F}{\partial \tau} V=\ln 3-\frac{1}{3}\left(\frac{m B}{\tau}\right)^{2}\right)$. The decrease in entropy is $\left.\frac{1}{3}\left(\frac{m B}{\tau}\right)^{2}\right)$ and $A=\frac{1}{3}(m B)^{2}$

