LULEÅ UNIVERSITY OF TECHNOLOGY
Division of Physics

Course code	F7035T
Examination date	$2013-08-31$
Time	$09.00-14.00$

Examination in: Statistical Physics and Thermodynamics
Total number of problems: 5
Teacher on duty: Hans Weber
Tel: (49)2088, Room E304
Examiner: Hans Weber
Tel: (49)2088, Room E304
Allowed aids: Fysikalia, Physics Handbook, Beta, calculator, Collection of formulae
Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. Maximum number of point is 15 p .7 .0 points is required to pass the examination. Grades 3: 7.0, 4: 9.5, 5: 12.0

1. Photons

At a blast of an atomic bomb temperatures in the range of $10^{6} \mathrm{~K}$ can be reached. Assume this is true for a 'fire' ball of diameter $d=10 \mathrm{~cm}$. Evaluate the following:
a) The total emitted power from this 'fire' ball.
b) What is the radiation flux at a distance of 2.0 km ?
c) At what wavelength λ peaks the output of power?

2. van der Waals gas

The partition function Z for a gas of N interacting particles is given by

$$
Z=\left(\frac{V-b N}{N}\right)^{N}\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)^{\frac{3 N}{2}} e^{\frac{a N^{2}}{V k_{B} T}}
$$

where a and b are constants and V is the volume. Derive the equation of state of the gas and also evaluate it's energy U.

3. Identical particles

A system consists of two particles. Each particle can be in one of the following three states with the energies: $0, \epsilon$ and 3ϵ. The system is coupled to a heat reservoir of temperature τ.
a) Evaluate an expression for the partition function Z if we consider the particles to be classical (ie we can label the particles as 1 and 2).
b) What will Z if the particles are bosons?
c) What will Z if the particles are fermions?

4. Interstitial atoms

The atoms in a crystal of a monoatomic substance can be assumed to sit in either their original lattice positions or in so called interstitial positions. Atoms sitting at a interstitial position have a higher energy compared to if they had been at an ordinary site. The difference in energy is denoted by ϵ. The crystal has N atoms, N lattice sites and N interstitial positions. At a temperature τ, n interstitial sites are occupied by atoms.
Calculate the fraction n / N if $\tau \ll \epsilon$ and N and $n \gg 1$.
(use the approximation $\ln n!=n \ln n-n$)

5. The three dimensional Ising-model in the mean field approximation

The three dimensional Ising model on a cubic lattice has the following 'Hamiltonian'

$$
H=-J \sum_{<i, j>} s_{i} s_{j},
$$

where the classical spins s have the following states +1 and -1 . The spins s_{i} interact with their nearest neighbours. Let $J=1$ and the system will have a ferro magnetic ground state, ie the magnetisation at temperature $\tau=0$ is $\langle m\rangle=\frac{1}{L^{3}} \sum_{i} s_{i}=1$.
As the temperature is raised the magnetisation disappears at a specific temperature the Curie temperature τ_{c}.

As the temperature approaches τ_{c} from below the magnetization goes to zero according to $m \propto\left(\tau_{c}-\tau\right)^{\beta}$. Within the mean field approximation calculate the exponent β for the magentisation.
$\left(\tanh (x) \approx x-x^{3} / 3\right.$ for small $\left.x\right)$.

