Course code	F7035T
Examination date	$2017-03-24$
Time	$09.00-14.00$

Examination in: Statistical Physics And Thermodynamics
Total number of problems: 5
Teacher on duty: Hans Weber
Tel: (49)2088, Room E163
Examiner: Hans Weber
Tel: (49)2088, Room E163
Allowed aids: Fysikalia, Physics Handbook, Beta, calculator, Collection of formulae
Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. Maximum number of point is 15 p .7 .0 points is required to pass the examination. Grades 3: 7.0, 4: 9.5, 5: 12.0

1. Phase separation in a mixture of two liquids

Below you see two figures, I and II. They show the average energy u of an atom as a function of the mixing fraction $x=N_{B} /\left(N_{A}+N_{B}\right)$, where N_{A} and N_{B} are the number of atoms of kind A and B.

Which one of the figures I or II will support a separation of the homogeneous mixture into two phases as the temperature is lowered. Where one phase is rich of atoms of kind A and one is rich of atoms of kind B. Explain and motivate why. (Hint, Support your arguments with figures, you may neglect the term $p V$ in the Gibbs free energy and support your arguments on Helmholtz free energy)

2. Two dimensional ideal Fermi gas

A two dimensional Fermi gas can be realised in semiconductors or thin ${ }^{3} \mathrm{He}$ films For an ideal Fermi gas in two dimensions derive the density of states $D(\epsilon)$.

3. Harmonic oscillator

A two dimensional harmonic oscillator has energy levels according to

$$
\epsilon_{n_{1}, n_{2}}=\left(n_{1}+n_{2}+1\right) \hbar \omega
$$

where n_{1}, n_{2} are integers $n_{i}=0,1,2,3, \ldots \infty$. The oscillator is coupled to a heatbath of temperature τ with which the oscillator can exchange energy.
(a) Calculate the partition function of the oscillator for any temperature.
(b) At what temperature equals the probability to find the oscillator in a state of energy $\hbar \omega$ to find it in a state of energy $2 \hbar \omega$?
(c) How large is this probability?

4. van der Waals gas

The partition function Z for a gas of N interacting particles is given by

$$
Z=\left(\frac{V-b N}{N}\right)^{N}\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)^{\frac{3 N}{2}} e^{\frac{a N^{2}}{V k_{B} T}}
$$

where a and b are constants and V is the volume. Derive the equation of state of the gas and also evaluate it's energy U.

5. Interstitial atoms

The atoms in a crystal of a monoatomic substance can be assumed to sit in either their original lattice positions or in so called interstitial positions. Atoms sitting at a interstitial position have a higher energy compared to if they had been at an ordinary site. The difference in energy is denoted by ϵ. The crystal has N atoms, N lattice sites and N interstitial positions. At a temperature τ, n interstitial sites are occupied by atoms.
Calculate the fraction n / N if $\tau \ll \epsilon$ and N and $n \gg 1$.
(use the approximation $\ln n!=n \ln n-n$)

