LULEÅ UNIVERSITY OF TECHNOLOGY
Applied Physics

Course code	F7035T
Examination date	$2018-03-23$
Time	$09.00-14.00$

Examination in: Statistical Physics and Thermodynamics
Total number of problems: 5
Teacher on duty: Hans Weber
Tel: (49)2088, Room E163
Examiner: Hans Weber
Tel: (49)2088, Room E163
Allowed aids: Fysikalia/Fysika, Physics Handbook, Beta, calculator, Collection of
formulae
Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. Maximum number of point is 15 p .7 .0 points is required to pass the examination. Grades 3: 7.0, 4: 9.5, 5: 12.0

1. Entropy

Use simple arguments concerning the specific heat C_{v} to answer the following questions.
a) For a metal the temperature is changed from 300 K to 800 K . By how large a factor will the entropy change for the conduction electrons?
b) For the electromagnetic radiation inside a cavity the temperature is changed from 500 K to 1200 K . By how large a factor will the entropy change for the radiation field inside the cavity?

2. Schottky anomaly

A system consisting of one particle is attached to a thermal reservoir at temperature τ. The particle can be in one of two states with energy 0 and ϵ_{0}.
a) What is the energy of the system $U \equiv\langle\epsilon\rangle$?
b) Calculate the heat capacity at constant volume of the system $C_{v}(\tau)$.
c) Is there a maximum in C_{v} as a function of temperature, and if at what temperature τ_{m} ?

3. Rotation of a di-atomic molecule

The kinetic energy of a di-atomic molecule consists of a translational part and a rotational part. The rotational energy $\epsilon(j)$ has quantised levels and for a di-atomic molecule these are given by:

$$
\epsilon(j)=j(j+1) \epsilon_{0}
$$

where j is an integer with the following values $j=0,1,2, \ldots$ The degeneracy $g(j)$ of each level is given by:

$$
g(j)=2 j+1 .
$$

a) Calculate the partition function for the rotational degrees of freedom $Z_{R}(\tau)$.
b) Approximate $Z_{R}(\tau)$ in the limit $\tau \gg \epsilon_{0}$ by an integral and calculate the specific heat C_{v} in this limit.
c) Approximate $Z_{R}(\tau)$ in the limit $\tau \ll \epsilon_{0}$ by truncating the sum to two terms and calculate the specific heat C_{v} in this limit.
d) Draw a figure showing the results from b) and c)

4. The DNA - molecule

The DNA-molecule consists, as we know of two chains (see figure 1) which are held together by bonds between the base pairs adenine and thymine (AT - bonds) and cytosine and guanine (CG - bonds). This means that the DNA - molecule can function much like a zipper and opened by the bindings sequentially broken from one end or from both ends. For a DNA molecule containing N bonds, the energy cost to break a bond is ϵ, and a broken bond can have g different orientations.
a) Show that the partition sum for a DNA-zipper that only can be opened from one of its ends is given by:

$$
Z^{(N)}=\sum_{N_{b}=0}^{N} g^{N_{b}} e^{-N_{b} \epsilon / \tau}
$$

where N_{b} is the number of broken bonds.
b) Evaluate explicitly and show that the fraction of broken bonds as $N \rightarrow \infty$ is 0 if $g e^{-\epsilon / \tau}<1$ and 1 if $g e^{-\epsilon / \tau}>1$.

This is an example of a first-order phase transition of the same kind as when water changes from a liquid to a gas. The phase transition occurs at the temperature $T_{c}=\frac{\epsilon}{k_{B} \ln (g)}$. The phase transition from a closed to open an DNA-zipper and vice versa occurs not because of body temperature, but because the bonding energy ϵ and hence T_{c} is changed due to catalytic influence on ϵ, which gives the same result.

Figure 1: How DNA melts, taken from http://www.patentlens.net/daisy/RiceGenome/3663/3612.html.

5. Maxwell velocity distribution

An experiment is designed to measure the Maxwell velocity distribution for a gas of Sodium (Na) atoms at $T=280^{\circ} \mathrm{C}$. The experimental set up is according to figure 2.

In the oven there is a gas of Sodium atoms. At the slit at A the atoms are allowed to leave the oven. The slit at A is usually closed by the rotating drum. But as the slit D in the drum and the slit A line up Sodium atoms are allowed to exit the oven into the rotating drum.
The drum has a diameter $d=10.0 \mathrm{~cm}$ and rotates with an angular velocity ω around the axis C.

Determine the angular velocity ω required so that Sodium atoms in the beam travelling at the most probable velocity $v_{m p}$ in the beam will hit the slit D again as they have travelled across the drum. (ie the drum has rotated half a turn)

Figure 2: A principal experimental setup to determine the Maxwell velocity distribution.

