LULEÅ UNIVERSITY OF TECHNOLOGY Applied Physics

Course code	F7035T
Examination date	2019-05-29
Time	09.00 - 14.00

Examination in:	STATISTICAL	Physics	AND	Thermodynamics
Teacher on duty:	Hans Weber			Tel: (49)2088, Room E163
Examiner: Hans	Weber			Tel: (49)2088, Room E163

Allowed aids: Fysikalia/Fysika, Physics Handbook, Beta, calculator, COLLECTION OF FORMULAE

Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow.

Total number of problems: 5. Maximum number of point is 15 p. 7.5 points is required to pass the examination. Grades 3: 7.5, 4: 10.0, 5: 12.0

1. Helium ${}^{3}He$

Helium ${}^{3}He$ has spin = $\frac{1}{2}$ and may at low temperatures to a good approximation be described as an ideal Fermi gas. At these low temperatures ${}^{3}He$ is in the liquid phase with a density of $\rho = 83$ kg m⁻³.

- a) Determine the Fermi temperature T_F and also the specific heat C_v of ${}^{3}He$ at T=0.2 K.
- b) Can you still use the approximations you did in a) if the temperature where say 2-3 K? If not why? If yes why?

(3p)

2. Adsorption

Consider an ideal gas (temperature T, chemical potential μ) in contact with a surface with N adsorption sites. Each adsorption site may be occupied by 0, 1 or 2 gas molecules. The energy of a vacant site is zero, the energy with one adsorbed molecule is $-\epsilon$ and the energy with two adsorbed molecules is $-\frac{3}{2}\epsilon$. ϵ can be positive or negative. There is no interaction between molecules at different adsorption sites.

- a) Calculate the grand canonical partition function for a fixed number N of adsorption sites.
- b) Use the grand canonical partition function to derive the mean number of adsorbed particles per site $\langle n \rangle$ and the mean internal energy per site $\langle u \rangle$ as a function of temperature T, μ and ϵ .

(3p)

TURN PAGE!

3. The three dimensional Ising–model in the mean field approximation

The three dimensional Ising model on a cubic lattice has the following 'Hamiltonian'

$$H = -J \sum_{\langle i,j \rangle} s_i s_j,$$

where the classical spins s have the following states +1 and -1. The spins s_i interact with their nearest neighbours. Let J = 1 and the system will have a ferro magnetic ground state, ie the magnetisation at temperature $\tau = 0$ is $\langle m \rangle = \frac{1}{L^3} \sum_i s_i = 1$.

As the temperature is raised the magnetisation disappears at a specific temperature the Curie temperature τ_c . As the temperature approaches τ_c from below the magnetization goes to zero according to $m \propto (\tau_c - \tau)^{\beta}$.

Within the mean field approximation calculate the exponent β for the magentisation.

$$(\tanh(x) \approx x - x^3/3 \text{ for small } x).$$
 (3p)

4. Harmonic oscillator

A three dimensional harmonic oscillator has energy levels

$$\epsilon_{n_1,n_2,n_3} = (n_1 + n_2 + n_3 + \frac{3}{2}) \hbar \omega$$

where n_1, n_2, n_3 är are integers from 0 to ∞ .

- a) At what temperature is the probability for the oscillator to be in a state of energy $\frac{3}{2}\hbar\omega$ or $\frac{5}{2}\hbar\omega$ the same?
- **b)** How large is this probability ?

(3p)

5. Diatomic molecule

An ideal gas consists of N identical molecules. Each molecule consists of two atoms with the following rotational energy levels: $E(j) = j(j+1)\frac{\hbar^2}{2I}$, j = 0, 1, 2, ... Where I is the moment of inertia. Each level is (2j+1) times degenerate. For low temperatures determine to lowest order in temperature the contribution to C_v from the rotational degrees of freedom.

(3p)

GOOD LUCK !